
Exploring the ARM Coherent Mesh
Network Topology

Philipp A. Friese(B) and Martin Schulz

Technical University of Munich, Garching, Bavaria, Germany
{friese,schulzm}@in.tum.de

Abstract. The continuously rising number of cores per socket puts a
growing demand on on-chip interconnects. The topology of these inter-
connects are largely kept hidden from the user, yet, they can be the source
of measurable performance differences for large many-core processors due
to core placement on that interconnect. This paper investigates the ARM
Coherent Mesh Network (CMN) on an Ampere Altra Max processor. We
provide novel insights into the interconnect by experimentally deriving
key information on the CMN topology, such as the position of cores or
memory and cache controllers. Based on this insight, we evaluate the
performance characteristics of several benchmarks and tune the thread-
to-core mapping to improve application performance. Our methodology
is directly applicable to all ARM-based processors using the ARM CMN,
but in principle applies to all mesh-based on-chip networks.

Keywords: Mesh Interconnect · ARM Coherent Mesh Network ·
Network-on-Chip

1 Introduction

Modern processors are equipped with an ever-increasing number of cores, each
on their own requiring high-bandwidth and low-latency connections to memory,
peripherals as well as other system components. This puts significant pressure
on the on-chip network and has prompted many, novel developments with the
promise of hiding the differences that could arise from process placement for
performance. However, this promise is hard to fulfill resulting in performance
differences that can be observed and can lead to load imbalances.

Unfortunately, current designs primarily report topology only at a NUMA-
domain and core-cluster level, treating all cores within a NUMA domain as
equivalent. Hence, the detailed topology is largely kept hidden from both the
operating system and the user. Information on the underlying interconnect topol-
ogy is usually limited to the interconnect type, such as ring or mesh, and does
not include the actual mapping of individual cores or nodes on that topology.
With the advent of a single processor reaching over 100 physical cores in a single
NUMA domain, this can hide performance differences caused, for example, by
the relative placement of cores to memory or other peripherals.
c© The Author(s) 2024
D. Fey et al. (Eds.): ARCS 2024, LNCS 14842, pp. 221–235, 2024.
https://doi.org/10.1007/978-3-031-66146-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66146-4_15&domain=pdf
http://orcid.org/0000-0002-3124-5364
http://orcid.org/0000-0001-9013-435X
https://doi.org/10.1007/978-3-031-66146-4_15


222 P. A. Friese and M. Schulz

Understanding the topology of a particular system interconnect allows
demanding applications to be optimized to topological nuances, which can oth-
erwise cause sub-optimal performance. We also expect that especially for large
many-core systems, this knowledge may improve scheduling of multiple appli-
cations and system-related services by reducing interference and placing them
topologically close to the required peripherals.

As an example of such a modern, high core-count processor, this paper inves-
tigates the ARM Coherent Mesh Network (CMN) 600 interconnect on an Ampere
Altra Max processor, which contains 128 ARM Neoverse N1 cores on a single
NUMA domain. We make the following contributions:

– We develop and apply a methodology to measure the topological differences
found distributed on-core mesh networks.

– We provide novel insight into the topology of the ARM Coherent Mesh Net-
work as present on the Ampere Altra Max system.

– Based on this insight, we evaluate the performance characteristics of sev-
eral benchmarks and tune the thread-to-core mapping to improve application
performance.

Our methodology is applicable to all ARM-based processors using the ARM
Coherent Mesh Network, but can be used as a blueprint for other many-core
systems with mesh networks. All software and data written and developed for
this paper are available at https://github.com/caps-tum/paper-2024-arcs-arm-
cmn.

The remainder of this paper is structured as follows. Section 2 introduces
details of the ARM CMN and its integration into the processor. Section 3 derives
key information on the ARM CMN topology based on performance counter data.
Section 4 utilizes this information and analyses the performance impact of tun-
ing the thread-to-core placement for several benchmark applications. Section 5
discusses related work, and Sect. 6 provides some concluding remarks.

2 Background: The ARM Coherent Mesh Network,
CMN

The work presented in this paper studies the ARM Coherent Mesh Network
(CMN), as used by the Ampere Altra and Altra Max processors. The CMN
implements a 2D mesh-based Network-on-Chip (NoC) and is the main inter-
connect for the processor, connecting CPU cores, memory management units,
system-level cache (SLC) controllers, and PCIe-attached peripherals, including
network cards and storage drives.

The Ampere Altra and Altra Max processors use the CMN-600 variant [2],
though the work presented in this paper is expected to be extendable to future
CMN versions without considerable changes. At its core, the CMN consists of
a mesh of Mesh Cross-Points (MXP), with the mesh size being dependent on
the processor-configuration. Each MXP is connected to up to four neighboring
MXPs, and can connect to devices via two device ports. Figure 1 illustrates the
MXP layout.

https://github.com/caps-tum/paper-2024-arcs-arm-cmn
https://github.com/caps-tum/paper-2024-arcs-arm-cmn


Exploring the ARM Coherent Mesh Network Topology 223

Fig. 1. Illustration of CMN Mesh Cross Point | Each Mesh Cross Point (MXP) is
connected to up to four neighboring MXPs via north, south, east, and west-facing
links. Up to two devices can be connected via device port 0 and 1.

The DDR memory is connected via Dynamic Memory Controllers (DMC),
which are in turn connected to MXPs via Fully coherent Slave Nodes (SN-F).
System-Level Cache (SLC) is connected via Fully coherent Home Nodes (HN-
F), and PCIe peripherals via I/O-coherent Request Nodes (RN-I). All nodes are
attached to the MXP via one of the two device ports. CPU cores are not directly
connected, but instead bundled into a DynamIQ Shared Unit (DSU) [3]. In the
Ampere Altra family, each DSU contains two ARM Neoverse N1 cores, as well
as a snoop control unit for maintaining coherency across the L1 and L2 cache
inside each N1 core. Each DSU in turn is connected to one MXP device port,
allowing up to four cores to be connected to one MXP.

The Ampere Altra family can be reconfigured via the BIOS to run in mono-
lithic, hemisphere or quadrant NUMA mode. Switching the system to hemisphere
or quadrant mode splits the chip into two and four NUMA domains respectively.
This changes the logical core numbering and restricts cores to target SLC and
memory controllers residing within the respective NUMA domain. We focus,
therefore, on the monolithic mode.

The CMN-600 includes a Performance Monitoring Unit (PMU), which
exposes a variety of hardware performance counters for both the MXPs and for
some of the connected nodes, namely the RN-Is, HN-Is, and HN-Fs. Each MXP
contains four physical counter registers. However, the entire CMN PMU can pro-
cess at most eight counter registers simultaneously across the mesh. These per-
formance counter registers can be configured and accessed from userspace using
the Linux perf event subsystem. Elevated privileges are required for access
as these counters represent system-wide state and may expose information on
unrelated applications to unprivileged users.



224 P. A. Friese and M. Schulz

3 Extracting the ARM CMN Topology

We derive the information on the ARM CMN topology in two steps: first we
extract the size of the mesh and the placement of mesh nodes via the CMN PMU.
Second, we derive the location of individual CPU cores and attached peripherals
by observing and analyzing communication patterns induced by specific bench-
marks on an otherwise quiet system.

3.1 Mesh Size and Node Locations

The size of the CMN-600 mesh depends on the processor-specific configuration
and can be extracted using the CMN PMU via the Linux perf event subsystem.
Each MXP is addressable via a node ID, which is either 7 or 9 bits long for the
CMN-600, encoding mesh coordinates of either two or three bits, respectively.
This allows for a maximum mesh size of 4 × 4 or 8 × 8 respectively. Given that
both the Ampere Altra and Altra Max contain more than 64 cores, and since the
DSUs for these processors are configured with two cores per DSU, the minimum
mesh size exceeds a 4 × 4 mesh, resulting in a node ID size of 9 bits.

In order to extract the exact mesh size, we use the perf event subsystem.
The Linux CMN PMU driver exposes events both on a system-wide and per-
MXP granularity [10]. MXP-level perf events can be configured by adding a
suffix to each requested performance counter event which contains the requested
node ID. For each of the possible node IDs in the 8 × 8 mesh, one perf event
is created which targets an arbitrary MXP-event for that ID. If the node ID
addresses an existing MXP, then the perf subsystem returns a value ≥ 0, oth-
erwise it returns <not supported>. This approach is used to probe for valid
event-node ID pairs, yielding the mesh sizes for the Ampere Altra and Altra
Max, which are configured with an 8 × 6 and 8 × 8 mesh respectively.

The second step is extracting information on nodes connected to MXP device
ports. The perf subsystem includes a variety of device-specific events, namely
for HN-F, HN-I, and RN-I devices. Using a similar approach outlined above,
perf is used to derive the location of these devices by iterating over each MXP
and probing for valid event-node ID pairs.

3.2 CPU Core and Peripheral Locations

The CMN PMU does not expose the location of cores or DSUs. However, these
can be derived by analyzing application-induced traffic on the mesh. The PMU
exposes the MXP events mxn [nesw] dat txflit valid, which count the num-
ber of valid transmit flits1 sent by an MXP to each of the four neighboring
MXPs (north, south, east, and west of it). In addition, each MXP also exposes
the number of valid transmit flits to each of the two device ports p[01]. Using
this event, the perf subsystem can be used to record packet transmissions on
the whole CMN. While each MXP can locally count events via four physical

1 A flit refers to the smallest transmittable unit sent between two MXPs.



Exploring the ARM Coherent Mesh Network Topology 225

registers, the CMN PMU is only capable of processing up to eight physical reg-
isters globally. Counting all 256 neighbor and 128 device port events for an 8×8
mesh is still possible, but involves the time-multiplexing feature of the perf
subsystem [1]. This approach introduces inaccuracies as some event counts are
missed. Measuring the mesh communication patterns of applications, therefore,
requires a sufficiently long benchmark duration. It is paramount to minimize
system-noise while running the benchmark in order to receive accurate results.

Pin-pointing the location of a single core can be achieved using an appli-
cation, which causes the MXP device port connected to that core to unam-
biguously transmit more flits than the rest of the system, making it clearly
discernible from other MXPs. We utilize a core-to-core latency benchmark writ-
ten by Nicolas Viennot [12] in Compare-and-Swap (CAS) mode. A pair of two
processes pinned to one core each share an atomic boolean variable. Each pro-
cess polls CAS operations on the variable, trying to set it to true and false for
the two processes respectively. Since each core caches the shared variable, this
polling causes repeated cache line transfers between the two cores. We use the
mxp [nesw] txdat flit valid events to capture the induced NoC traffic and
the mxp p[01] txdat flit valid events to capture device port traffic. If the
benchmark is run for a sufficiently long time on an otherwise quiet system, these
counters will peak for two device ports connecting the MXP with the respective
DSU.

Figure 2 visualizes the observed MXP events for the core-to-core latency
benchmark between Core 60 and Core 42. Each of the three plots shows the
number of events per MXP with mesh index (x, y), visualized as coloured
cells. Hatched MXP cells have not been observed to transmit data during
the benchmark, likely due to performance counter multiplexing. Results for
the mxp [nesw] txdat flit valid events are merged into the left-most plot,
the remaining mxp p[01] txdat flit valid events are kept separate. The two
MXPs at location (6, 0) and (1, 7) show a large amount of transmitted flits over
device Port 0 and therefore most likely contain one of the involved DSUs each.
This is further confirmed by the majority of CMN traffic being routed through
these MXPs, as visualized in the leftmost plot. In order to disambiguate the
DSU location, we run the benchmark twice, keeping one of the two cores fixed
between runs. The resulting measurements then show one shared mesh location
with large transmit flits, which enables us to disambiguate the DSU locations.

For N physical cores, this process is repeated for all potential core-pairs
(0, 2n). We keep Core 0 fixed for the purpose of disambiguation. Core pairs
(2n, 2n+1) are located on the same DSU, therefore we only consider even cores.
Using this approach, we map the position of each DSU and therefore core onto
the mesh.

Each SLC controller is connected to exactly one HN-F, so their locations are
already derived during the non-core device probing. DDR memory is connected
via a Dynamic Memory Controller (DMC), which is always connected to a Fully
coherent Slave Node (SN-F). Similar to DSUs, these are not directly observable
using the CMN PMU. A similar approach to deriving core locations is used:



226 P. A. Friese and M. Schulz

Fig. 2. Measurement of CMN mxp * txdat flit valid events of core-to-core latency
benchmark running on Cores 60 and 42 | Left plot shows sum of all four MXP inter-
connect events, center and right plot show device port events. Hatched MXPs have
not been observed to transmit data during the benchmark due to performance counter
multiplexing.

We run the memory-intensive STREAM benchmark [11], which generates traffic
from and to the memory controllers. Based on the output of the perf subsystem
on an otherwise quiet system, the locations of each DMC can be pin-pointed.
Similar approaches are taken to derive the location of attached storage and
network devices, using the GNU dd tool to generate traffic to the storage device,
and iperf3 to generate traffic to the network card.

Following this approach for the entire system then leads us to the complete
derived layout of the ARM CMN on an Ampere Altra Max system in monolithic
NUMA mode, which is displayed in Fig. 3. Several observations can be made.
The eight memory controllers ((M), red) are located on the left and right side
of the chip. Similarly, all 16 SLC controllers ((C), green), are in an 8 × 4 band
between the memory controllers. Given that both memory and SLC access in
monolithic NUMA mode are equally spread across all controllers, this config-
uration effectively separates the chip into two zones: Cores within the 8 × 4
band have minimal average distance to the memory and SLC cache controllers,
whereas the upper three and the lowest row have increased distance. Figure 4
visualizes the Manhattan distance from each MXP to the cache (HN-F) and
memory (SN-F) controllers (hatched) respectively, indicating a preferred zone in
the lower chip center with minimal distance to both types of controllers. This
will lead to memory-intensive applications running faster in the lower chip center
compared to applications running on cores outside the center zone.



Exploring the ARM Coherent Mesh Network Topology 227

Fig. 3. Derived ARM CMN-600 Topology on an Ampere Altra Max in monolithic
NUMA mode | Squares represent MXPs. Labels in MXPs show devices on Port 0 in
upper half and port 1 in lower half. Labeled device ports observed on machine with one
storage and network device, as well as all memory controllers occupied with memory
modules. Non-labeled device ports are available but not connected to devices. Core
numbering as reported by OS. (Color figure online)

4 Measurements and Results

Based on the derived Coherent Mesh Network topology of the Ampere Altra
Max, two synthetic benchmarks and one scientific simulation are chosen to test
the hypothesized performance variation across the chip. For all following bench-
marks the Ampere Altra Max is configured in monolithic NUMA mode and is



228 P. A. Friese and M. Schulz

Fig. 4. Heat map of average distance in number of hops from DSUs to Cache (HN-F)
and Memory (SN-F) Controllers | Distance measured via Manhattan metric. Hatched
cells indicate target HN-F/SN-F controllers. Brighter DSU cells indicate lower distance.

equipped with 512 GB of main memory distributed across all eight memory
controllers.

Measurements presented in this section are performed for sets of N cores
placed in two zones: (1) the top rows of the chip furthest away from the cache
and memory controllers, and (2) the “preferred” zone in the lower center with
minimal distance to these controllers, as visualized in Fig. 4. The second zone is
referred to as “center” for brevity. For each zone, measurements are performed
for all possible combinations of mapping N cores onto DSUs and MXPs.

4.1 Synthetic Benchmarks

Both the OpenMP Microbenchmark and the STREAM benchmark are synthetic
benchmarks measuring core-to-core latency and memory bandwidth respectively.

OpenMP Microbenchmark: The OpenMP Microbenchmark [4] (Version 4.0)
contains benchmarks for individual OpenMP clauses, out of which the barrier
clause benchmark is used. The benchmark measures the overhead of the barrier
clause over a reference time taken from an idle loop2.

Figure 5 visualizes the measured overhead per core-pair. The first group
places two cores on one DSU and hence one MXP. It shows no significant differ-
ence in overhead, which is expected as all cache lines exchanged between both
cores are routed within the DSU cache coherency unit and thus never enter the
CMN. The second group shows a large performance difference both internally

2 The benchmark is run with the following parameters: --outer-repetitions 500

--test-time 5000.



Exploring the ARM Coherent Mesh Network Topology 229

Fig. 5. OpenMP Barrier Microbenchmark for two cores | Overhead in µs, measured
against benchmark-internal baseline. Lower is better. Boxplots for 25 iterations per
measurement. Measurements for cores located at top and center of chip respectively.
Grouped into cores within one DSU, two DSUs on one MXP, and two MXPs. Core-
pairs from left to right: (60, 61), (2, 3), (60, 124), (2, 66), (60, 52), (2, 18), numbered as
in Fig. 3.

and compared to the first group. In comparison to the first group, the “top”
core pairs show a performance difference of almost 2x, the “center” pairs at the
chip center of about 1.5x. Although each core pair in the middle group is located
on one MXP, cache lines are routed via the CMN through one of the SLC con-
trollers. The “center” core pair is located at (2, 66), leading to a smaller average
distance to the SLC controllers as compared to the “top” core pair at (60, 124).
This causes the center-of-chip core pair to exhibit lower overall overhead. The
last group follows a similar pattern, although the increase in overhead to the
middle group is negligible since average distance to SLC controllers remains
similar. Since coherency communication is routed to the SLC controllers, the
cores cannot take advantage of being scheduled on one instead of two MXPs.

Figure 6 visualizes the measured overhead for four cores mapped to the four
combinations of number of DSUs and MXPs. Overhead for cores located on
two DSUs remains largely equivalent, which matches expectation since cross-
DSU cache line exchange traverses via SLC and is not routed within MXPs.
Whether both DSUs are located on one or two MXPs is therefore not observed
to significantly impact performance. A larger performance penalty is observed
when moving to four DSUs, independent of the number of involved MXPs. Cores
located on the chip center exhibit lower overall overhead, again due to reduced
average distance to the SLC controllers.



230 P. A. Friese and M. Schulz

Fig. 6. OpenMP Barrier Microbenchmark for four cores | Overhead in µs, mea-
sured against benchmark-internal baseline. Lower is better. Boxplots for 25 itera-
tions per measurement. Core-tuples from left to right: (56, 57, 120, 121), (2, 3, 66, 67),
(56, 57, 58, 59), (56, 120, 48, 112), (2, 66, 7, 70), (2, 3, 6, 7), (56, 48, 50, 58), (2, 64, 4, 6),
numbered as in Fig. 3.

STREAM: The STREAM benchmark [11] (Version 5.10) measures sustainable
memory bandwidth to the DDR memory3. Figure 7 visualizes the measured copy
rate for two cores as reported by the benchmark. Unlike the OpenMP barrier
microbenchmark, all three groups show improved throughput of 7–10% if cores
are scheduled in the chip center. Scheduling cores on separate DSUs shows an
increase in throughput as compared to one DSU, making the DSU a likely bot-
tleneck for I/O-heavy applications.

Fig. 7. STREAM benchmark for two cores | Memory bandwidth in MB/s, based on
reported Copy Rate. Boxplots for 10 iterations per measurement. Higher is better. Core-
pairs from left to right: (60, 61), (2, 3), (60, 124), (2, 66), (60, 52), (2, 18), numbered as
in Fig. 3.

This finding is further confirmed by Fig. 8, which visualizes the copy rate for
four cores. The same observation for top and center mapping is visible, however,
3 The benchmark is compiled with option -O2 -DSTREAM ARRAY SIZE=150000000

-DNTIMES=100.



Exploring the ARM Coherent Mesh Network Topology 231

the largest throughput is observed for cores mapped to four DSUs located in
the chip center. The lowest throughput for cores on the chip center is observed
for cores (2, 3, 66, 67), which are all located on one MXP. This further suggests
that memory-intensive applications may be bottlenecked by the DSU interface.
Cores located at the top of the chip and therefore furthest away from the memory
controllers are observed to more strongly benefit from distributing cores across
as many MXPs as possible.

Fig. 8. STREAM benchmark for four cores | Memory bandwidth in MB/s, based
on reported Copy Rate. Boxplots for 10 iterations per measurement. Higher is
better. Core-tuples from left to right: (56, 57, 120, 121), (2, 3, 66, 67), (56, 57, 58, 59),
(56, 120, 48, 112), (2, 66, 7, 70), (2, 3, 6, 7), (56, 48, 50, 58), (2, 64, 4, 6), numbered as in
Fig. 3.

Both the OpenMP barrier benchmark and the STREAM memory benchmark
show a measurable increase in performance if cores are scheduled close to the
chip center. The performance characteristics differ, however, when considering
placement strategies: the throughput-bound STREAM benchmark benefits from
spreading involved cores onto multiple DSUs and even MXPs. The latency-bound
OpenMP barrier benchmark benefits from mapping core pairs onto one DSU,
but is largely invariant to the number of MXPs, as long as it is placed close to
the SLC controllers.

4.2 LULESH Benchmark

The Livermore Unstructured Lagrange Explicit Shock Hydrodynamic
(LULESH) benchmark [8] (Version 2.0, OpenMP-variant), part of the CORAL
benchmark suite, is a parallel unstructured flow solver and will be used to evalu-
ate topologically induced real-world performance differences. LULESH was cho-
sen as it is susceptible to OpenMP-induced overhead and is thus expected to
benefit from topology-aware scheduling.

Figure 9 visualizes the reported Figure Of Merit (FOM) in elements (z) per
second for two cores. Scheduling within the chip center shows a performance
improvement of 3.1%, 6%, and 4% for the three groups respectively. Scheduling



232 P. A. Friese and M. Schulz

Fig. 9. LULESH benchmark for two cores | Figure Of Merit (FOM) in elements (z)
per sec. Problem size of -s 26. Boxplots for 25 iterations per core-pair. Higher is
better. Core-pairs from left to right: (60, 61), (2, 3), (60, 124), (2, 66), (60, 52), (2, 18),
numbered as in Fig. 3.

on one DSU notably outperforms scheduling across DSUs, which indicates that
LULESH is latency-bound for two cores.

Fig. 10. LULESH benchmark for 32, 48, and 64 cores | Figure Of Merit (FOM) in
elements (z) per sec. Problem sizes of -s 70, -s 75, and -s 80 for 32, 48, and 64
core runs respectively. Boxplots for 10 iterations per core-pair. Higher is better. X axis
shows number of involved cores per measurement.

Finally, we measure the performance of LULESH for larger allocations of 32,
48, and 64 cores at the top and center of the chip respectively. The results are
visualized in Fig. 10. Mapping cores in the center of the chip shows a consistent
performance improvement of about 5% as compared to the chip top. We conclude
that the observed performance benefit of placing applications in the preferred
zone in the chip center remains relevant for larger allocations of the LULESH
benchmark.



Exploring the ARM Coherent Mesh Network Topology 233

4.3 Discussion

Evaluating the behavior of I/O- and latency-sensitive applications on the
Ampere Altra Max shows that proximity to memory and cache controllers has a
measurable impact on performance. The processor topology can be roughly split
into two zones: a preferred zone in the center, close to these controllers, and
the complementary zone. This implies that processing cores on large many-core
systems cannot be considered equivalent with respect to performance.

Applications and schedulers need to incorporate this topological difference to
avoid sub-optimal performance results. Large applications spanning the entire
chip should utilize this knowledge to position processes in a more optimal way,
for example, by placing memory-intensive processes closer to the memory con-
trollers and insensitive processes further away. Multiple smaller applications and
system-wide daemons could be scheduled according to their performance pro-
file, for example, by placing performance-insensitive daemons, such as logging
or monitoring services, onto lower-performing cores, leaving higher performance
cores for the applications.

Integration of the presented approach into production systems relies on access
to the CMN topology information. It could either be provided via additions to
the Linux kernel sysfs, which currently only provides unique IDs per DSU or
core cluster and not the mesh coordinates, or via a user-level data source such
as a library. Schedulers could then use this information to derive a beneficial
placement strategy.

While the methodology presented in this paper was derived and tested on
an ARM processor using the CMN-600 interconnect, it mainly requires access
to crosspoint-level performance counters. We expect that this methodology is
not restricted to just the CMN-600, but also extends to future versions with
a similar performance counter granularity. It could also be extended to other
architectures, under the assumption that they also expose crosspoint-level data.

5 Related Works

Horro et al. [6] reverse-engineered the physical layout of an Intel Knights Landing
processor by profiling memory access latencies and modeling the most likely
mesh configuration based on these measurements. Similarly, Hyungmin Cho [5]
reverse-engineers the physical layout of an Intel Xeon Scalable processor, but
uses an approach closer to the one presented in this paper, namely by utilizing
Intel performance monitors to measure induced traffic on the mesh.

Katevenis et al. [9] analyze the impact of cache coherency traffic on multi-
socket Intel Ice Lake processors for MPI collective operations, showing that an
increase in core-to-core latency can severely impact performance of especially
MPI synchronization collectives. While the authors study the effect of multi-
socket systems, we expect that optimizing MPI collective operations with respect
to cache coherency traffic also on an intra-socket level may further improve their
performance and see the work presented in this paper as a starting point for
future research.



234 P. A. Friese and M. Schulz

Kandemir et al. [7] propose an architecture-aware compiler algorithm, which
aims to execute operations using data stored nearby. We expect the results pre-
sented in this work to be applicable to the algorithm introduced by the authors.

6 Conclusion

In this paper, we utilized performance counter data to derive the topology of
the ARM Coherent Mesh Network as implemented in the Ampere Altra proces-
sor family, focusing on the larger Ampere Altra Max processor. Based on this
information, we analyzed the performance characteristics of two synthetic bench-
marks and show that latency- and memory-bound applications benefit from dif-
ferent placement strategies. Both benefit from placement close to memory and
system-level cache controllers, which coincides with the lower chip center. Finally
we analyzed the performance impact of the LULESH simulation benchmark and
showed that a performance improvement of 5% can be achieved with no modifi-
cations to the code other than placing it onto the central chip zone. Our research
shows that the cores in the Ampere Altra Max show different performance behav-
ior and should not be treated as equivalent.

Acknowledgments. This research is supported by the European Commission under
the Horizon project OpenCUBE (101092984).

References

1. Multiplexing and scaling events (2023). https://perf.wiki.kernel.org/index.php/
Tutorial#multiplexing and scaling events

2. Arm Limited: Arm R©CoreLinkTMCMN-600 Coherent Mesh Network Technical Ref-
erence Manual (2020)

3. Arm Limited: Arm R©dynamiqTMshared unit technical reference manual (2023)
4. Bull, J.M., O’Neill, D.: A microbenchmark suite for OpenMP 2.0. ACM SIGARCH

Comput. Archit. News 29(5), 41–48 (2001)
5. Cho, H.: Know your neighbor: physically locating Xeon processor cores on the core

tile grid. In: 2022 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1521–1526. IEEE (2022)

6. Horro, M., Kandemir, M.T., Pouchet, L.N., Rodŕıguez, G., Touriño, J.: Effect of
distributed directories in mesh interconnects. In: Proceedings of the 56th Annual
Design Automation Conference 2019, pp. 1–6 (2019)

7. Kandemir, M.T., Akbulut, G.G., Choi, W., Karakoy, M.: Architecture-aware cur-
rying. In: 2023 32nd International Conference on Parallel Architectures and Com-
pilation Techniques (PACT), pp. 250–264. IEEE (2023)

8. Karlin, I., Keasler, J., Neely, R.: Lulesh 2.0 updates and changes. Technical report.
LLNL-TR-641973 (2013)

9. Katevenis, G., Ploumidis, M., Marazakis, M.: Impact of cache coherence on the
performance of shared-memory based MPI primitives: a case study for broadcast on
intel Xeon scalable processors. In: Proceedings of the 52nd International Conference
on Parallel Processing, pp. 295–305 (2023)

https://perf.wiki.kernel.org/index.php/Tutorial#multiplexing_and_scaling_events
https://perf.wiki.kernel.org/index.php/Tutorial#multiplexing_and_scaling_events


Exploring the ARM Coherent Mesh Network Topology 235

10. Kernel Development Community: Arm coherent mesh network PMU. https://
www.kernel.org/doc/html/v6.7/admin-guide/perf/arm-cmn.html

11. McCalpin, J.D.: STREAM: sustainable memory bandwidth in high performance
computers. Technical report, University of Virginia, Charlottesville, Virginia
(1991–2007). http://www.cs.virginia.edu/stream/, a continually updated techni-
cal report

12. Viennot, N.: core-to-core-latency (2024). https://github.com/nviennot/core-to-
core-latency

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://www.kernel.org/doc/html/v6.7/admin-guide/perf/arm-cmn.html
https://www.kernel.org/doc/html/v6.7/admin-guide/perf/arm-cmn.html
http://www.cs.virginia.edu/stream/
https://github.com/nviennot/core-to-core-latency
https://github.com/nviennot/core-to-core-latency
http://creativecommons.org/licenses/by/4.0/

	Exploring the ARM Coherent Mesh Network Topology
	1 Introduction
	2 Background: The ARM Coherent Mesh Network, CMN
	3 Extracting the ARM CMN Topology
	3.1 Mesh Size and Node Locations
	3.2 CPU Core and Peripheral Locations

	4 Measurements and Results
	4.1 Synthetic Benchmarks
	4.2 LULESH Benchmark
	4.3 Discussion

	5 Related Works
	6 Conclusion
	References


