
HORIZON
Topic: CL4-2022-DIGITAL-EMERGING-01

Digital and emerging technologies for competitiveness and fit for the green deal

OpenCUBE
101092984

D 2.1
Pilot System Architecture Design and Prototype

Implementation Report
WP 2: Hardware Platform for the European Processor

Date of preparation (latest version): 2023-12-31
Copyright© 2023 – 2026 The OpenCUBE Consortium

The opinions of the authors expressed in this document do not necessarily reflect the
official opinion of the OpenCUBE partners nor of the European Commission.

Ref. Ares(2023)8897936 - 29/12/2023

D 2.1: Pilot System Architecture Design and Prototype Implementation Report

DOCUMENT INFORMATION

Deliverable Number D 2.1
Deliverable Name Pilot System Architecture Design and Prototype Implemen-

tation Report
Due Date 2023-12-31 (PM 12)
Deliverable lead Semidynamics
Authors V. Casillas (SiPearl), P. Marcuello (Semidynamics)

J. Vaquero (Semidynamics), P. Deus (Semidynamics)
H. Ponce (SiPearl), T. Mueller (HPE)
P. Friese (TUM)

Responsible Author Pedro Marcuello (Semidynamics)
e-mail: pedro.marcuello@semidynamics.com

Keywords OpenCUBE
Pilot system, Rhea Processor
RISC-V accelerator, Slingshot

WP/Task WP 2/Task 2.1, 2.2, 2.3 and 2.4
Nature R
Dissemination Level PU
Final Version Date 2023-12-31
Reviewed by Emanuele Danovaro (ECMWF)

Stefano Markidis (KTH)

2

pedro.marcuello@semidynamics.com

D 2.1: Pilot System Architecture Design and Prototype Implementation Report

DOCUMENT HISTORY

Partner Date Comment Version
KTH 2023-09-15 Skeleton version of the deliverable 0.1
KTH 2023-09-27 Updated version of the deliverable 0.2
All Partners 2023-12-05 Populated all sections and ready for internal review 0.3
SiPearl 2023-12-12 Update some missing parts 0.4
All Partners 2023-12-20 Rework conclusion and missing parts 0.5
KTH 2023-12-22 Update wording, terms 0.6
KTH 2023-12-31 Final cleanup, final version 1.0

3

D 2.1: Pilot System Architecture Design and Prototype Implementation Report

Executive Summary
This deliverable describes the current state of deployment of the OpenCUBE pilot system
based on the different components from the European Processor Initiative (EPI). Since
the main components are not available yet, the system has been built with the appropriate
replacements, as described in this deliverable, to facilitate the development of the related
software tasks. In this way, the Rhea processor is to be replaced by Ampere Altra
processors and the EPAC2 accelerator by the same FPGA scheme that is used as SDV
in EPI-2 and EuPilot projects. All these components are connected through the high-
performance Ethernet-based HPE Slingshot interconnect.

4

D 2.1: Pilot System Architecture Design and Prototype Implementation Report

Contents
1 Introduction 6

2 Hardware components 7
2.1 Computer Node Architecture . 7

2.1.1 Rhea emulation . 7
2.1.2 EPAC2 emulation . 7

2.2 Network architecture . 8
2.2.1 Dragonfly Topology & Slingshot Network 9

2.3 Storage and IO architecture . 11
2.3.1 Performance Implications . 11

3 Software components 12
3.1 Libraries, Drivers . 12
3.2 Toolchain . 12

3.2.1 ARM . 12
3.2.2 EPAC2 & RISC-V . 12

4 Pilot Platform Demonstration 14
4.1 Security documentation . 17
4.2 FPGAs . 19

5 Conclusions and Next Steps 21

5

D 2.1: Pilot System Architecture Design and Prototype Implementation Report

1 Introduction
The OpenCUBE project proposes to design a full-stack solution for a European Cloud
computing blueprint that will be deployed on European hardware infrastructure. The
different work packages of this project target the different components of the stack. In
this way, Work Package 2 focus on developing the OpenCUBE pilot system based on
the both hardware outcomes from the European Processor Initiative project, the Rhea
processor and the EPAC2 accelerator, and it is the objective of this deliverable. On the
other hand, the rest of the work packages focus on the operating system, the software
stack (WP3), the middleware, the memory management and network software in WP4.
Finally, WP5 establishes the requirements and the expected performance for the different
kind of applications.

The objective of this deliverable is to describe the initial design of the pilot platform,
including compute node architecture, network architecture, and system architecture and
prototype implementation and benchmarking results. The first pilot system initially in-
cludes equivalents commercial components to the final ones, as it is stated in the proposal,
in order to facilitate the early prototyping of the software stack since both hardware com-
ponents are not available yet. Therefore, the first prototype described in this deliverable
consists of ARM-based processor systems for Rhea, a FPGA-based hardware for the
RISC-V accelerator and the high-performance Ethernet-based HPE Slingshot intercon-
nect.

This deliverable is organized as follows: Section 2 describes the Compute Node ar-
chitecture, including both the ARM and the EPAC2 emulation platforms, the Network
Architecture and the Storage and the IO architecture. The Software components required
for the execution of applications is described in Section 3. Section 4 details the current
state of deployment of the OpenCUBE pilot system, including the security documenta-
tion agreed by the partners to access to the system. Finally, Section 5 summarizes the
conclusions of the document and lists the next steps to be taken in the next year.

6

D 2.1: Pilot System Architecture Design and Prototype Implementation Report

2 Hardware components
2.1 Computer Node Architecture
In this section we will give a brief introduction of the compute node architecture of
OpenCUBE prototype. It will be based on ARM-based servers that have similar archi-
tecture of the SiPearl Rhea processor that will be deployed later in the project, and it
includes the EPAC2 accelerator, the network topology and the rest of the components
for the prototype cluster.

2.1.1 Rhea emulation

SiPearl Rhea processor is based on high performance, power efficient Arm Neoverse V1
cores, designed specifically for HPC workloads. Each Neoverse V1 core includes Arm
Scalable Vector Extension (SVE) for high-performance double precision, single precision,
BFloat16 and 8-bit integer performance, addressing the full range of HPC workloads
including AI and Machine Learning. Incorporating in-package High Bandwidth Mem-
ory (HBM), Rhea delivers extraordinary compute performance and efficiency with an
unmatched Bytes/Flops ratio. All the Arm Neoverse V1 cores, are connected through
a Coherent on-chip network. This network includes PCIe and CXL to ensure smooth
connection with accelerator and high speed low latency networks, which is mandatory for
efficient HPC applications. This network also provides access to Last Level Cache (SLC,
Arm terminology for Level 3 cache), DDR and HBM stacks to all the compute cores.

As Rhea platforms will not be available during the first phase of the project as a
mitigation plan it was decided to deploy a first version of the prototype with an Arm
based processor using same kind of architecture. HPE servers RL300 containing Ampere
Altra processor were selected as they are based on Rhea previous generation of cores
(Neoverse N1) and mesh (CMN600). Of course some features will not be testable on this
prototype (like SVE and HBM) but all the porting effort of the software stack as well as
applications can be performed without any issue. Those 1U servers with a single Ampere
Altra processor can host several PCIe boards for network and accelerator. As a first step
they were equiped with Slingshot network cards and then Xilinx FPGA boards will be
used to emulate EPAC2 as described in the next section.

2.1.2 EPAC2 emulation

The OpenCUBE project accelerator hardware consists of a set of two Xilinx® Alveo U55C
FPGA cards installed in ARM®-based server hosts. These FPGA cards were developed
aiming at high-performance computational applications, making them uniquely suitable
for the present project. Each card provides two 100 Gb/s capable QSFP28 connections
for high-speed networking, a PCIe connection configurable as either a single 16-lane Gen3
link (1×128 Gb/s) or a dual link 8-lane Gen4 (2×128 Gb/s) configuration, and on-chip
16 GB of HBM2 (high-bandwidth memory).

By design, the Alveo U55C cards are equipped with a Xilinx XCU55C FPGA, con-
taining an adequate number of logical resources (LUTs, Registers, BRAMs, URAMs) to
deploy a bitstream consisting of one Semidynamics RISC-V Atrevido® Core with a 512-bit

7

D 2.1: Pilot System Architecture Design and Prototype Implementation Report

Vector Unit on a Coherent Hub Interface (CHI) Network-on-Chip (NoC), with a Home
Node (HN) and 1 MB of L2 Cache. Among several features, the RISC-V core provides
support for high memory bandwidth via Gazzillion Misses®, RISC-V Vector ISA support
for activation functions (SIMD instructions) and Zfh extension support for half-precision
(smaller memory footprint, faster execution).

PCIe to Host
(XDMA drivers)

10GbE
ETH
MAC

PCIe EP + DMA

HBM2

AV0
TSU512

L2

CHI NoC

AXI4

UARTuUSB

Figure 1: Simplified block diagram of the Atrevido® Core integration on the bitstream for
the Xilinx Alvelo U55C FPGA card.

The bitstream architecture, depicted in Figure 1, was carefully designed to follow the
project integration and interfacing requirements, as well as to maximize the connectivity
paths between the Atrevido® Core, board peripherals and ultimately, the hosting server.
The Atrevido® Core has direct access to the 16 GB of HBM2 through a dedicated AXI4
interface. In parallel, the same HBM2 memory is fully accessible from the server host
side via PCIe. This low-level interfacing via PCIe allows for (i) loading data such as
binary boot images into the board memory and (ii) driving/monitoring the core’s specific
interface signals relevant for operation kick-start. Alongside, the core is connected to a 10
GbE Network Interface, which enables (i) establishing terminal connections over ssh to
the core and (ii) expanding storage through NFS. These features release the connectivity
potential of the accelerator card as they extend access to any partner over the network. An
additional terminal is implemented over UART and it is mostly intended for local access
and maintenance operations. The same Micro-USB connector allows for establishing both
the ttyUSB UART and JTAG programing connections.

2.2 Network architecture
There are three physically separated networks in the current pilot system:

• The hardware management network (HMN), a mostly 1Gbit s−1 ethernet network
connecting hardware-related components like the Base Management Controller
(BMC), switch management interfaces and Power Distribution Unit (PDU).

8

D 2.1: Pilot System Architecture Design and Prototype Implementation Report

• The client/customer access network (CAN), a 10Gbit s−1 ethernet network used for
shared home directory filesystem as well as OS management and SSH user traffic.

• The high-speed network (HSN), a ≥200Gbit s−1 network based on HPE Slingshot
for HPC traffic.

A network architecture for a full-scale deployment will depend on various factors, such
as the size of a cluster or security considerations. Rather than trying to impose a customer
network architecture we will instead try as best to accommodate for any possible scenario
by only making the most basic assumptions.

This proposal therefore represents a minimal segmentation, accounting directly for the
needs of the different physical parts. While all three network segments could be directly
bridged (since they are based on Ethernet), their different speed characteristics as well as
level of access to the underlying hardware, make it most likely that they will be routed
in practice.

We are employing virtual network segmentation by grouping assigned IP addresses in
a large enough network, and relying on DHCP where possible, which will make it easy
to introduce additional subnets, should the need arise in the course of the project.

While the HMN and CAN are regular Ethernet-based networks, is the HSN based on
HPE Slingshot, as an example of a High-performance Ethernet solution.

First, in standard Ethernet topologies, loops are not supported. The Spanning Tree
Protocol (STP), respectively its extensions, the Rapid STP implement loop detection and
automate disabling of redundant links. It does not support load balancing over links and
is known to be slow to adapt when the topology changes (for example due to a switch
or link failure). Load balancing is often implemented via the Link Aggregation Control
Protocol (LACP), often called bonding or teaming, but is also supported by the Multi
STP protocol.

This scales poorly in a High-Performance Computing (HPC) scenario as it leads to
a tree-shaped architecture. To avoid bottlenecks as network utilization increases, links
between switches must be scaled up accordingly. Furthermore, as the network grows, the
number of hops between any two node increases as more layers must be added due to
limited port capacity per switch. For latency there is no remedy.

Furthermore, in a HPC network buffering is not an option since it will not be able to
guarantee to maintain low latency, in particular not in busy networks as capacity gets
saturated.

The problems mentioned above are crucial in an HPC network where guaranteed la-
tencies are required to avoid stalling MPI collective functions which have to wait on the
slowest connection to finish.

Slingshot solves all of the above issues with its Dragonfly topology, Adaptive Routing
and Congestion Control.

2.2.1 Dragonfly Topology & Slingshot Network

A typical High-Performance Computing (HPC) application must distribute its state
across many nodes and assumes the communication cost between arbitrary nodes to

9

D 2.1: Pilot System Architecture Design and Prototype Implementation Report

(a) Dragonfly topology. Each node rep-
resents a switch. Purple edges are
inter-group, blue are intra-group con-
nections. Each group is connected to at
least one other group. Edges can also
be multiple aggregated links. Compute
nodes can be connected to more than
one switch in a group.

(b) Standard ethernet topology.

Figure 2: Network topology comparison.

be equal. HPC applications can easily saturate a connection but still require very low
latency to avoid wasting cost intensive compute time. Acceleration of communication
primitives on the level of MPI Collective Functions are needed to efficiently steer com-
munication. Remote Direct Memory Access (RDMA) is again required to free up the
CPU for other tasks and increase the performance.

HPE Slingshot’s Dragonfly Topology as depicted in Figure 2a takes this into account
by creating a hierarchical ring topology, effectively reducing the number of hops to a fixed
constant [1]. By encoding the the switch and port numbers directly into MAC numbers,
it furthermore forgoes the need for package routing tables and associated lookups. By
enforcing a backstall at the NIC level in case of traffic congestion, it avoids costly buffer
maintenance overhead on the switch side.

The management and configuration of such a network is then not automatically resolved
on a peer-to-peer level, but rather centrally. In a Slingshot network, this is done by the
Fabric Manager Node, an entity comprising of multiple services communicating with all
the switches via an out-of-band (OOB) HMN.

10

D 2.1: Pilot System Architecture Design and Prototype Implementation Report

2.3 Storage and IO architecture
2.3.1 Performance Implications

The storage architecture developed and deployed in OpenCUBE will utilise both NVMe-
based local storage and network-based remote storage. Currently connected via the fron-
tend network, remote storage is going to utilise the Slingshot-based high-speed network.

Local storage will provide high-throughput and low-latency storage capabilities, which
will however not match the storage size of the remote storage servers. Assuming an
application with high I/O demands, performance will be additionally limited by the
available local storage size. If the locally deployed storage is not sufficiently large, then
the Slingshot-based remote storage must be used. Utilisation limits of the high-speed
network however are shared between application-based communication, for example via
MPI or RDMA, and storage-based communication. This may lead to a degradation of
application-based communication during I/O intensive periods due to interference.

Mitigation of this performance degradation is possible either by sizing local storage in
accordance to application requirements, or by adding a secondary storage-network. The
monitoring architecture developed in Work Package 3 will provide insights into storage
and IO utilisation.

11

D 2.1: Pilot System Architecture Design and Prototype Implementation Report

3 Software components
3.1 Libraries, Drivers
OpenCUBE will provide basic libraries such as the linear algebra libraries, BLAS, Eigen
and the library set Boost. Access to fabric-attached memory will be provided using the
OpenFAM reference library. The high-performance computing communication interface
MPI will utilise the Slingshot-based high-speed network using the network library libfab-
ric. Access to hardware performance counters is given using the in-kernel perf_events
subsystem, which also supports ARM platforms such as the Ampere Altra deployed in
the OpenCUBE testbed.

3.2 Toolchain
3.2.1 ARM

Support for the ARM aarch64 target is readily available in both GCC 13 and LLVM/clang
18, therefore both toolchains will be made available to OpenCUBE users. Both compilers
fully support OpenMP 4.5 and include partial support for OpenMP 5. GNU Fortran will
be provided as a toolchain for Fortran-based applications. Specific versions of GCC and
LLVM will be made available to OpenCUBE project with optimization done by SiPearl
based on the different benchmarks results obtained during next periods.

3.2.2 EPAC2 & RISC-V

The accelerator part for the Opencube project is defined in the EPAC2 project, based on
the RISC-V architecture. Due to delays in the EPAC2/Pilot projects, RISC-V accelerator
will be accessible via a simulation infrastructure based on FPGA, as described in the
section 2.1.2. As for initial steps, Semidynamics will provide the bitstreams to program
the FPGA, the toolchain for cross-compiling from x86 into RISC-V binaries, and a set of
initial libraries.

There are two tested and ready cross-compilers, both of them fully support RISC-V
bit-manipulation, vector extensions, hardware counters, and half precision floats,

• Gcc 13.1 Toolchain. Including vector intrinsics support.

• Clang 18 Toolchain. Including vector intrinsics and vector half precision floating
point support.

In order to support a development environment for such porting, implementation we
are providing a Spike version that matches Semidynamics EPAC2 accelerator core. Qemu
8.0 might be used with full Linux support for the Vector 1.0 specification. We are includ-
ing a set of highly optimized libraries for EPAC2 hardrware, with vector support and C
standard string routines like strlib. For the AI scope, Semidynamics will supply special-
ized routines like convolutional layers, GEMM, activation functions, logistic activation,
and maxpool. We will support as well quantization and other standards for data width
reduction like brain float16 and brain float. Although bfloat is not part of the RISC-V

12

D 2.1: Pilot System Architecture Design and Prototype Implementation Report

vector standard, Atrevido® and Semidynamics vector unit provides proprietary support
for AI floating point formats such as brain floats.

13

D 2.1: Pilot System Architecture Design and Prototype Implementation Report

4 Pilot Platform Demonstration
A Bill of Materials (BOM) of the relevant components can be found in Table 1, consisting
of three groups of independent active hardware: network devices, compute devices and
others (PDUs, Field-Programmable Gateway Arrays (FPGAs), etc.). We performed ini-
tial benchmarking on the OpenCUBE pilot system and present the results extensively in
Deliverable D4.1: Initial system characterisation and middleware requirements, specifica-
tion, and design, Section 2. As detailed in D4.1-Section 2, we used a set of benchmarks, in-
cluding iperf for point-to-point Ethernet throughput, netperf for point-to-point Ethernet
latency for Slingshot high speed network communication, and the OSU Microbenchmark
Suite for both point-to-point and collective MPI communication, the MemoryLatency tool
and Stream for memory subsystem, and the open-source core-to-core-latency benchmark
for processor core topology.

Networking is performed via three switches, a specialised Slingshot switch, and ded-
icated standard Ethernet frontend and management switches. The Slingshot switch is
required to build a Slingshot network, as listed in the proposal, which substitutes for a
High-Performance Ethernet network. For the rest of the infrastructure, two switches were
necessary to accommodate for the different connectivity methods: while the Out-of-band
(OOB) management connections all feature a standard RJ45 connector for 1GbitE, and
can thus use cheaper cables, the 10GbitE interfaces are usually equipped with SFP+
cages and require corresponding transceiver modules or the use of Direct Attach Copper
(DAC) cables with integrated transceivers.

The compute side components consist of a Fabric Manager Node, specified according
to official HPE Slingshot guidelines, and to be connected to the Fabric via a management
port on the Slingshot switch. While its task is to configure and monitor the Slingshot
network, it will also be used as the login node and host of shared home directories. The
infrastructure nodes will be used as the Cray System Management (CSM) management
servers for deployment, management and monitoring of the compute nodes. The compute
nodes currently encompass 4 HPE RL300 servers with Ampere Altra ARM CPUs as a
reference system to compare against the SiPearl Rhea Evaluation Board (EVB) to be
delivered at a later date. They will also be used for direct development and testing on
the ARM architecture. Note that the Ampere Altra is an ARM Neoverse N1 core and
thus similar enough to the Neoverse V1 based Rhea CPU to allow this kind of substitute
development.

Other devices beyond the networking and compute ones include a smart PDU that
enables OOB power usage monitoring and full remote control. The system integrates a
AMD/Xilinx Alveo U55C FPGA, which is discussed in section 4.2.

The installation process, from receiving the hardware, the hardware components, to
the actual installation of the hardware into the dedicated rack, as well as the rack layout
itself, can be seen in Figure 4.

For the initial prototype the network layout closely follows the available hardware
components described at the beginning of this section.

We determined and evaluated three options for a network setup, as described in the
following paragraphs. Note that, since the Slingshot network is always isolated over
dedicated hardware, the following options mainly concern the logical separation of the

14

D 2.1: Pilot System Architecture Design and Prototype Implementation Report

Table 1: Hardware Specifications

(a) Network devices

Name Model Ports
Management Switch HPE FlexNet 5140 EI (R8J41A) 24x1Gbit Ethernet RJ45

2x10Gbit Ethernet SFP+
2x10Gbit Ethernet RJ45

Frontend Switch HPE Aruba 3810M (JL075A) 12x10Gbit Ethernet
2x Expansion Slots

Slingshot Switch Rosetta 64x200Gbit Slingshot

(b) Compute devices

Name Qty. Model CPU Memory Storage Network
FMN 1 HPE ProLiant

DL325 Gen10 Plus
v2

AMD 7443P 24C 256GiB 4x3.84TB
NVMe

2x10GbitE

Infra 2 HPE ProLiant
DL325 Gen10 Plus
v2

AMD 7313P 16C 512GiB 1x480GB SATA
1x960GB SATA

2x10GbitE
1x200GbitS

RL300 4 HPE ProLiant
RL300 Gen11

Ampere Altra 512GiB 1x2TB NVMe 2x10GbitE
1x200GbitS

(c) Other devices

Name Description Details
SmartPDU
Xilinx/AMD Alveo FPGA U55C Plugged into infra-1.

15

D 2.1: Pilot System Architecture Design and Prototype Implementation Report

(a) Hardware packages. (b) RL300 w/ Slingshot adapter installed.

Figure 3: Phase I hardware ready for installation.

(a) Front

U Description U
42 Mgmt SW 42
41 Ethernet SW 41
40 Slingshot SW 40
39 FMN 39
38 Infra Server 38
37 Infra Server 37
36 RL300 36
35 RL300 35
34 RL300 34
33 RL300 33
32 32
31 31
30 30

(b) Unit occupation. Other
units not shown are
empty and available to
OpenCUBE. (c) Rear

Figure 4: Phase I rack installation.

16

D 2.1: Pilot System Architecture Design and Prototype Implementation Report

three networks required: uplink, frontend, and management.

• We do not employ any Virtual Local Area Networks (VLANs) to separate the
networks on the L2 level, but rely on physical interfaces instead.

• Each of the 10GbitE ports of the Fabric Manager Node connect to one of the
switches.

• An extra NIC (possibly with a transceiver) is added to the Fabric Manager Node
to connect to the Data Center (DC) uplink.

• The Fabric Manager Node gets each of the three networks on one of three separate
physical ports.

This setup is illustrated in figure 5. It also provides enough flexibility in regard to
extensions or other deployment experiments (e.g. a separate storage network with Quality
of Service (QoS) on L2 level).

For network and hostname naming as well as IP number assignment we are following
CSM nomenclature (except for xnames):

• HMN: Hardware Management Network

• CAN: Client or Customer Access Network

• HSN: High-Speed Network

• CN: Compute Node

The detailed network assignment following that nomenclature is listed in table 2. To
anticipate network segmentation to accommodate for test scenarios we are using large
subnets out of the private allocations with holes. This permits easy mapping of server
names to matching IP addresses and makes it possible to split machine groups into
separate subnets if required without any relevant user-visible change.

4.1 Security documentation
Deploying a prototype within a collaborative cannot be done without doing a security
assessment and reviewing access rules in order to protect each partner asset, that’s why
some work was done to define a security concept. Main ideas behind this security concept
are first to protect some confidential assets that may come from some partners (SiPearl,
Semidynamics or any other partner of the consortium) and used in this prototype and
to avoid unexpected usage of this platform by nonmembers of the consortium. Idea is
also to ease maintenance and access to this platform for the different partners, putting
in place a complex setup will slow down usage of this platform from partners.

Security constraints will evolve during project lifecycle if partners provide confidential
codes or assets to this prototyping platform. As of today, we do not consider this security
concept is aimed to protect secrets or highly confidential data from any partners.

17

D 2.1: Pilot System Architecture Design and Prototype Implementation Report

Internet

fmninfra1 infra2

Frontend SwitchMgmt SwitchSlingshot switch

SmartPDU

RL300 1 RL300 2 RL300 3 RL300 4

Figure 5: Prototype virtual network diagram. In red is the management network, blue
the regular or frontend network and yellow the dedicated Slingshot network.
The dual connection between the Fabric Manager Node and the Management
Switch is the connection of the OOB management of the Fabric Manager Node
itself and to give users on the Fabric Manager Node access to the management
network itself.

Main security concept will be to define a login node as front-end to this cluster, that all
partners will connect to via ssh. This login node will allow access to the rest of the cluster.
Basic requirements defined below were agreed between the partners before deployment
of this initial prototype:

• Access to login node will be done through ssh

• SSH configuration shall be compliant with ANSSI rules (NT_OpenSSH_en.pdf):
– No root login
– Public key only
– Port shall be different than standard port (22)

• Access to login node will be filtered by IP.

• All cluster nodes shall be accessible from this login node.

18

https://www.ssi.gouv.fr/uploads/2014/01/NT_OpenSSH_en.pdf

D 2.1: Pilot System Architecture Design and Prototype Implementation Report

Hostname hmn.pt. can.pt. hsn.pt.
172.109.0.0/16 10.97.0.0/16 10.115.0.0/16

login. 172.109.0.1 10.97.0.1
172.109.0.2 10.97.0.2
172.109.1.1

pdu. 172.109.1.2
hmnsw1. 172.109.2.1
cansw1. 172.109.2.2
hsnsw1. 172.109.2.3
infra1. 172.109.3.1 10.97.3.1 10.115.3.1
infra2. 172.109.3.2 10.97.3.2 10.115.3.2
cn1. 172.109.4.1 10.97.4.1 10.115.4.1
cn2. 172.109.4.2 10.97.4.2 10.115.4.2
cn3. 172.109.4.3 10.97.4.3 10.115.4.3
cn4. 172.109.4.4 10.97.4.4 10.115.4.4

Table 2: List of assigned IP addresses across networks. The intention of spreading the IP
addresses is to make it possible to easily introduce additional subnets if needed
and maintain an easy name to IPv4 address mapping.

• Firewall shall be configured on login node and only ssh shall be open.

• Access to external resource will be possible from login node and compute (GitHub,
GitLab…) though a pxoxy to avoid direct access to internet (https and filtering will
be setup).

• Login node configuration (SW stack) shall be reviewed before deployment by HPE,
SiPearl and Semidynamics.

4.2 FPGAs
The system demonstration was performed using a single Alveo U55C card, installed at
a PCIe slot available at the infra1 host node. The Micro-USB connection, providing
both the UART terminal and the JTAG links, was set to the login1 host node, running
Xilinx Vivado Lab Tools within a Podman software container over OpenSUSE Linux. In
parallel, the card QSFP1 port was connected to a 10 GbE capable Network Switch to
establish the Ethernet link between the accelerator card and the partner nodes.

At login1, the JTAG connection was verified and the U55C device was successfully
detected by the Vivado Lab Tools. The U55C on-board memory was then flashed with a
default bitstream containing a i) Xilinx PCIe Endpoint with DMA engine (same as the
complete bitstream with Atrevido® Core) and ii) the HBM2 memory connected via AXI4.
The purpose of this bitstream was not only to test the working status of this particular
board unit but also to test the i) correct PCIe endpoint device enumeration, ii) Xilinx
XDMA Linux device driver attachment and, consequently iii) the seamless exchange of

19

D 2.1: Pilot System Architecture Design and Prototype Implementation Report

data between the infra1 host and the card over PCIe. Once the on-board memory was
flashed, the infra1 was rebooted and the previously described steps were successfully
achieved using a set of developed scripts for automatically testing the I/O access to
the FPGA card. Furthermore, this approach based on a default bitstream (sharing the
same PCIe endpoint configuration) presents the unique advantage of enabling to replace
the bitstream running on the FPGA without rebooting the host and only implying a
temporary device removal / rescan procedure from the Linux PCIe device tree. The
steps required for the procedure were encoded into bash scripts and repeatedly used
across the deployment tests.

Using the bitstream replacement technique, the FPGA was loaded with the config-
uration described in 2.1.2 and a RISC-V compatible Linux image was booted into the
device. This process, automated using bash scripts and C++ XDMA I/O applications,
makes use of the PCIe link to copy the Linux image into the FPGA board HBM2 and
to configure the Atrevido® Core registers, triggering the Linux boot process. The Linux
boot screen, available through the UART terminal at login1, allowed for verifying that
the boot process was successful, to login to the device using a root account, and to verify
the status of the Ethernet link. Finally, an ssh connection was established between login1
host node and the U55C card, enabling to remotely access the card’s Linux terminal and
to exchange test files.

20

D 2.1: Pilot System Architecture Design and Prototype Implementation Report

5 Conclusions and Next Steps
In this deliverable we have described the current state of deployment and the setting
up process of the OpenCUBE pilot system. We have also described the architectural
decisions taken in the design, especially related to the interconnection of the different
components.

The first pilot system is now live and will be used by other work packages to port and
benchmark their applications. Some developments for the OpenCUBE pilot are already
planned in the next months. The first one will be to add some storage equipment to
enable larger data sets for applications benchmarks. Then as Rhea platform will be only
available by end of next period, we will integrate the first prototypes of Rhea platform
(containing all the management part) that will be available in Q2 2024. This integration
will allow fast deployment of systems once Rhea platforms will be available for the project.

On the RISC-V accelerator side, the current approach for executing applications in the
FPGA is in standalone mode. Instead of that initial model for setting up and testing basic
kernels and libraries, in the next reporting period we will focus in building the software
tool-chain and providing the mechanisms to offload part of the applications from the
general purpose cores to the accelerator. In this way, thanks to the feedback obtained
from the rest of the partners in the project, we plan to work on the ONNXRuntime
framework for executing HPC, AI and machine learning applications.

21

D 2.1: Pilot System Architecture Design and Prototype Implementation Report

References
[1] John Kim et al. “Technology-Driven, Highly-Scalable Dragonfly Topology.” In: SIGARCH

Comput. Archit. News 36.3 (June 1, 2008), pp. 77–88. issn: 0163-5964. doi: 10.1145/
1394608.1382129. url: https://doi.org/10.1145/1394608.1382129 (visited on
09/06/2023).

Glossary
Fabric Manager Node A set of services required to setup, manage and monitor a Sling-

shot network.. 10, 14, 17, 18

MPI Collective Functions Set of MPI functions involving 1:N, M:1 or M:N communica-
tion rather than only node to node. Ex. MPI Broadcast, Allgather, Scatter. Such
functions must often wait on the slowest link to complete.. 10

Acronyms
BMC Base Management Controller. 8

BOM Bill of Materials. 14

CAN client/customer access network. 9

CSM Cray System Management. 14, 17

DAC Direct Attach Copper. 14

DC Data Center. 17

EVB Evaluation Board. 14

FPGA Field-Programmable Gateway Array. 14

HMN hardware management network. 8–10

HPC High-Performance Computing. 9, 10

HSN high-speed network. 9

OOB Out-of-band. 14, 18

OOB out-of-band. 10

PDU Power Distribution Unit. 8, 14

22

https://doi.org/10.1145/1394608.1382129
https://doi.org/10.1145/1394608.1382129
https://doi.org/10.1145/1394608.1382129

D 2.1: Pilot System Architecture Design and Prototype Implementation Report

QoS Quality of Service. 17

RDMA Remote Direct Memory Access. 10

VLAN Virtual Local Area Network. 17

23

	Introduction
	Hardware components
	Computer Node Architecture
	Rhea emulation
	EPAC2 emulation

	Network architecture
	Dragonfly Topology & Slingshot Network

	Storage and IO architecture
	Performance Implications

	Software components
	Libraries, Drivers
	Toolchain
	ARM
	EPAC2 & RISC-V

	Pilot Platform Demonstration
	Security documentation
	FPGAs

	Conclusions and Next Steps

