
2×

219

2023 IEEE 35th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)

2643-3001/23/$31.00 ©2023 IEEE
DOI 10.1109/SBAC-PAD59825.2023.00031

20
23

 IE
EE

 3
5t

h
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

Co
m

pu
te

r A
rc

hi
te

ct
ur

e
an

d
Hi

gh
 P

er
fo

rm
an

ce
 C

om
pu

tin
g

(S
BA

C-
PA

D)
 |

 9
79

-8
-3

50
3-

05
48

-7
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SB

AC
-P

AD
59

82
5.

20
23

.0
00

31

2023 IEEE 35th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)

Kub: Enabling Elastic HPC Workloads
on Containerized Environments

Daniel Medeiros, jacob Wahlgren, Gabin Schieffer, Ivy Peng
Department of Computer Science

KTH Royal Institute of Technology, Sweden
{dadm, jacobwah, gabins, bopeng}@kth.se

Abstract-The conventional model of resource allocation
in HPC systems is static. Thus, a job cannot leverage newly
available resources in the system or release underutilized
resources during the execution. In this paper, we present
Kub, a methodology that enables elastic execution of HPC

workloads on Kubernetes so that the resources allocated to
a job can be dynamically scaled during the execution. One
main optimization of our method is to maximize the reuse
of the originally allocated resources so that the disruption
to the running job can be minimized. The scaling procedure
is coordinated among nodes through remote procedure calls
on Kubernetes for deploying workloads in the cloud. We
evaluate our approach using one synthetic benchmark and
two production-level MPI-based HPC applications - GRO
MACS and CMl. Our results demonstrate that the benefits
of adapting the allocated resources depend on the workload
characteristics. In the tested cases, a properly chosen scaling
point for increasing resources during execution achieved up
to 2 x speedup. Also, the overhead of checkpointing and data
reshuffling significantly influences the selection of optimal
scaling points and requires application-specific knowledge.

Index Terms-HPC, Cloud, scaling, Kubernetes, Elasticity,
Malleability

I. INTRODUCTION

In recent years, two main trends have contributed to
the rising importance of the convergence between High
performance computing (HPC) and cloud. The first trend is
the increased compute resources on recent HPC systems,
where a single node may be equipped with multiple high
end CPUs, GPUs, and 200-500 GB RAM. For instance, the
Frontier supercomputer has four GPUs and lTB memory
per node. Therefore, the conventional coarse-grained static
resource allocation strategy on HPC systems faces challenges
in resource utilization, and efforts in exploring fine-grained
dynamic resource allocation strategies that have matured on
the cloud are increasing. Secondly, workloads are evolving
towards more complex patterns, e.g., workflows [1], [2]
incorporating traditional scientific simulations, and machine
learning and in-situ data analytics. Meanwhile, the availabil
ity and accessibility of compute resources in public cloud
providers like Amazon, Google, and Microsoft have attracted
users to explore running HPC applications on the cloud, and
previous limitations of scaling up HPC applications on cloud

This research is supported by the European Commission under the
Horizon project OpenCUBE (GA-101092984).

2643-3001/23/$31.00 ©2023 IEEE
DOl 1 0.1109/SBAC-P AD59825.2023.00031

219

infrastructure are being addressed in recent active research
development [3]- [6].

As user-facing cloud services tend to experience spikes
or cyclical demand in their time series, cloud-native work
loads, such as search and web serving, have shifted their
development from a monolithic to a microservice, loosely
coupled structure. This shift was made to leverage the native
adaptive autoscaling capabilities that are built into many de
ployment systems. These scaling decisions may be grounded
in models that take into account application-specific metrics,
such as the incoming number of requests, response time,
available system resources (i.e., CPU, memory), and historical
patterns [7].

Elasticity, which refers to the degree to which a system
can adapt its resource provision to workload changes [8],
has become a promising direction for converged cloud and
HPC computing in recent years. In HPC systems, resource
allocation to jobs is coarse-grained and static, so a job with
high peak usage of resources may have to wait a long time
until all resources become available for its execution. From
a resource management perspective, this can block spare
resources in an HPC system until a large task can start.
In contrast, cloud-based systems offer fine-grained dynamic
resource allocation to cloud-native workloads. This is because
the cloud approach for resource allocation has developed
and matured over the years to support the demand for
elastic execution from cloud-native workloads. Specifically,
HPC users and developers are seeking opportunities in elastic
execution for high computing power, high availability, and
cost efficiency.

Certain types of HPC workloads, such as deep learning,
can make extensive use of this elasticity. This owes to the fact
that such workloads and related applications (i.e., TensorFlow
and PyTorch) are already structured in a way that shares the
training/predicting load in batches among the active nodes.
This makes solutions such as Elastic Horovod1, which detects
new nodes in real-time, feasible to use. However, the same
cannot be directly applied to tightly-coupled workloads that
are built atop Message Parsing Interface (MPI) for distributed
memory programming. Traditional HPC schedulers, such as
SLURM, do not support the dynamic change of nodes in their
resource allocation to a job [9]. Once a job starts running,

1 Elastic Horovod: https://horovod.readthedocs.io/

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on January 22,2024 at 09:49:59 UTC from IEEE Xplore. Restrictions apply.

•

•

•

•

220

adding new node resources is cumbersome, if not impossible.
This means that a full start/stop process is necessary for
changing the number of nodes, and the previously allocated
resource will be lost, and time should be spent waiting for a
new allocation if that was not previously available.

This work aims to address the problem of elastic scal
ing of HPC workloads by reusing the already provisioned
infrastructure, with a focus on the cloud-containerized en
vironment. We achieve this through the usage of the de
facto industry standard container orchestrator Kubernetes
and multiple representative HPC workloads that allow the
understanding of the gap from achieving elastic execution.

In this paper, these are our major contributions:
• We identify technical challenges of running MPI-based

applications with a state-of-art container orchestrator.
• We propose an approach for elastic horizontal scaling

of tightly-coupled workloads, in particular ones that are
using MPI in a containerized context.

• We implement the proposed approach and quantify
the overhead and its benefits in the HPC applications
GROMACS and CMl.

• We discuss the application requirements and the trade
offs of elastic scaling of HPC applications in container
ized environments.

This paper is structured as follows. Section II discusses
the current state-of-art means for executing HPC workloads
on the cloud, including some cloud-first technologies that
are later used in this paper. Section III shows our ap
proach for elastic scaling workloads and the details of our
implementation. Section IV dives into the specifics of the
applications workloads we are using for this work, while
Section V displays our setup and results. Section VI briefly
discusses some related works while Section VII consists of
the conclusions and our future works.

II. BACKGROUND

In this section, we describe the differences between HPC
and Cloud workloads and introduce the building blocks for
enabling elastic execution in this work.

A. HPC and Cloud Workloads

Cloud computing applications tend to be loosely-coupled
and fault tolerant [10]. User-facing applications should be
able to scale up and down according to demand, and tech
niques such as load balancing, where the processing batch
can be directed to a less-stressed node, helps with the
design of such applications. Some of the representative cloud
workloads are search, data streaming, web serving, and in
memory databases [11].

Meanwhile, high-performance computing workloads tend
to be tightly-coupled as there is usually an interdependence
between the calculations being distributed among the nodes.
For instance, the CORAL-2 benchmark suite contains repre
sentative HPC workloads2, which includes molecular dynam
ics, quantum Monte Carlo, fluid simulation and cosmology.

2Coral-2 benchmarks: https://asc.llnl.gov/coral-2-benchmarks

220

The Message Parsing Interface (MPI) is the dominant
approach for communication in HPC workloads, as a means
for performing distributed calculations over a large number
of compute nodes. In many cases, these calculations are
explicitly or implicitly blocking operations because their
execution time is determined by the slowest node due to
data dependencies. Although MPI has introduced some mech
anisms recently to support dynamically adding or removing
members to a communicator, the schedulers on HPC systems
have little support to change node allocation to a job once it
starts. Therefore, in practice, this means that the only way of
changing the number of allocated nodes during the execution
is through the process of restarting the application.

B. Containers and Orchestrators

Containers are a solution to isolate the resources of tasks
executing in the same node. In Linux-based systems, the
isolation of resources is implemented through the cgroups
feature. Docker is the industry standard for containers;
however, due to security concerns (i.e., the container runs
as root by default), other container technologies such as
Singularity [12] and Podman [13] have been more used
in HPC systems. In the case of Docker, the container is
defined by a Dockerfile which contains the base image (i.e.,
an operating system, such as Alpine Linux or Debian) to
be used and a series of deterministic commands related to
the application that one desires to deploy - this includes the
installation of dependencies, compilation of software/libraries
and setting environment variables.

These images are deployed by orchestrators, which are
responsible for not only distributing the containers among
the nodes, but also monitoring them and ensuring that their
characteristics - such as minimum number of replicas - stay
consistent with the desired number by the user. Some of the
popular orchestrators are Kubernetes, OpenShift Container
Platform and Docker Swarm, with all of them being tested
in HPC environments [14].

A Kubernetes cluster consists of at least two nodes, one
being the master and the other being a worker node. The
former runs decoupled applications responsible for the com
munication interface between the user and the cluster (named
api-server), the scheduler, an etcd object storage for storing
data and metadata from the cluster and a controller manager.
Inside every worker node, there is an application named
kubelet, responsible for dealing with incoming requests from
the api-server, such as executing pods and exposing pod
metrics for scrappers.

The basic unit within a Kubernetes cluster is the pod
- an abstraction of resources for executing a container.
Computational resources are defined as the time used by
the CPU and the Memory. A worker node may contain
one or more pods at the same time, and similarly, a pod
may have one or more containers executing within the same
resource domain. A set of equal pods can be associated as
a ReplicaSet, where the controller manager ensures that the
desired number of pods will be running in case of failure.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on January 22,2024 at 09:49:59 UTC from IEEE Xplore. Restrictions apply.

221

Deployments are an extended ReplicaSet with more useful
features.

Architecturally, the idea of a pod was developed for tasks
that should run for an indefinite amount of time. For time
limited, finite tasks, the concept of jobs is used. In practice,
a job is marked as completed when a certain number of
pods have been executed and successfully finished. In this
case, the pods do not necessarily need to execute and finish
at the same time, although in some cases (e.g., MPI-based
workloads) they do.

By default, each pod has its own IP inside the Kubernetes
network and can freely communicate with other pods unless
otherwise defined. Aside from the IP, a pod can reach others
through the usage of the built-in domain name server records
which is deterministic and based on variables such as the
name of the pod and its namespace. However, as either the IP

or the DNS record might be mutable, Kubernetes introduces
the concept of service as a means to gather a set of pods
providing similar service (i.e., user-facing) and, at the same
time, exposing it outside the network.

Any kind of Kubernetes-defined or custom-defined re
sources are defined through the usage of YAML files. The
schema used by such files through Kubernetes is standardized
and checked for errors before execution. Upon acceptance of
the YAML file, the default Kubernetes scheduler first looks
for feasible nodes and then, among the returned group of
nodes, checks for the most viable ones through scoring.

Finally, the security mechanism in Kubernetes is performed
through a system called RBAC (role-based access control).
One may define a certain role that is able to get, create, delete
or edit certain types of resources and then assign such role
to, for example, a pod. By default, a pod is not able to create
other pods or modify cluster-level settings.

C. Autoscaling

In cloud settings, autoscaling means changing the amount
of resources of an existing allocation. This may be through
the change of already allocated CPU and memory (in this
case, vertical scaling) or through the increment or decre
ment of the number of available nodes for the application
(horizontal scaling).

Kubernetes provides a built-in vertical pod autoscaler
(VPA) and a horizontal pod autoscaler (HPA) by default.
However, as these tools were originally designed for cloud
applications, there are some problems when trying to use
them with HPC workloads. First, the VPA consists of three
components, namely the admission controller, recommender
and updater; based on the historical pattern of CPU/Memory
usage of the application, the recommender outputs a value
for CPU and Memory. If the recommended value is too
different from the used one, the pod is evicted and restarted.
This is because Kubernetes currently does not allow changes
in the requested resources of a pod unless the pod is
restarted. While there are some ongoing works to address this
limitation and change the allocated CPU/Memory resources
dynamically, this is currently not in production versions.

221

The built-in HPA queries the resource utilization period
ically and according to user-defined policies, such as the
threshold for a certain metric, it decides to scale up or down.
The metrics can be either directly related to physical resource
usage (i.e., CPU or Memory) or application-level metrics, such
as the number of incoming requests. However, in tightly
coupled workloads, the built-in horizontal scaler has no effect
at all. If one is running an MPI application, for example, the
newly started rank would execute the same calculations by
itself, being unable to join dynamically the already existent
communicator.

D. Volcano and MPI

Volcano3 is a batch system for Kubernetes, providing tools
for certain types of workloads that run on frameworks
such as TensorFlow, Spark and MPI. Kubeflow4 is another
framework, with a strong focus on machine learning, that
enables one to run MPI workloads on the cloud.

The YAML file for deploying a Volcano MPI job consists
in defining a VolcanoJob with two types of pods: one
named master and another that has a worker suffix.
Additionally, the YAML file also specifies two plugins that
are necessary to run MPI workloads, the svc and the ssh
plugins. The former is responsible to enable all the pods
within a job to visit each other by domain name and by
default establish a policy of not allowing any other pod
outside service to communicate with that network of pods.
Additionally, it creates a list of all the working pods that
will execute. The second plugin generates a key pair locally
and mounts /root/. ssh as a read-only directory at every
Volcano-created pod. This ensures that all the pods will
have ssh passwordless authentication between each other,
a prerequisite to smoothly run MPI jobs. There is currently
an "MPI plugin" for Volcano which can be used instead of
the svc and ssh plugins, in practice, replacing both, but
not allowing the same degree of flexibility required by this
paper.

OpenRTE [15], part of the Open MPI project, is the heart
of how Volcano executes its MPI jobs. As its name implies,
OpenRTE is a runtime environment that provides services
related to process management, communication coordination
and resource allocation. When launching a process through
the mpiexec wrapper, one may specify which hosts are
necessary to connect - this is collected by Volcano, and Open
RTE interacts with a daemon at every node - named orted
through a defined communication protocol to coordinate the
launch and information such as launch path, environment
variables and command line arguments. OpenRTE and orted
keep an interaction for message passing and monitoring until
the end of the execution.

Figure 1 displays the structure of a Volcano system The
master pod is responsible to start the MPI jobs, while
the workers execute the workload itself. In general, the

3Volcano: https://volcano.sh
4Kubeflow: https://www.kubeflow.org/

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on January 22,2024 at 09:49:59 UTC from IEEE Xplore. Restrictions apply.

222

Service e

Nodes

I
Job Master

/llm·llllll ,,
J.----,,

• 1, Worker 1
!'MM·�!J�
' :r---'
' Worker 2 ' ' ' �·!�·�

·---

Master

kube-ap1 '

••••• ';.
------�,

Input

• VA
--ML

Fig. 1: The overall structure of a Volcano deployment in
Kubernetes. O Defined through a YAML file, the job is
communicated to the api-server (or kube-api). 8 This call
is intercepted by Volcano's admission controller that checks
whether the YAML has all required fields and contains no
enor. O If everything is correct, data is sent to the scheduler
which verifies whether it is possible to allocate the job.
O When the resources are available, the kubelets inside
each node are ordered to create the pod allocation with the
desired containers for the job. A pod can contain one or more
containers, and nodes can also run more than one pod. O
The "master" pod awaits all "worker" pods to be active and
open their ssh daemon. When they are ready, orted starts
the MPI job among them O All the pods are encapsulated by
a "service" type, so they can communicate using each other
by domain. Volcano's scheduler and controller, responsible
for monitoring the jobs, effectively replace the ones included
in Kubernetes by default.

worker-0 pod is considered the root rank of the MPI
execution. While the spawning process of containers might
take longer for some, the master node will keep crashing
and restarting until orted can successfully connect with
all the listed nodes. After the execution, the job is marked as
Complete at the Kubernetes cluster.

E. Resource Monitoring

The kubelet that runs on every node collects informa
tion regarding CPU and Memory through cAdvisor [16],
a profiling application maintained by Google that is in
tended for Docker containers. The Prometheus Operator5
is a Kubernetes application that is able to scrape meh·ics
not only from all the kubelets, but also from the master
node, exposing them for further usage in]SON format. By
connecting to the web API of Prometheus, one is capable of
retrieving the time-series and history of the metrics, as well
as checking the current status of a node in near-real time.
Other applications that are combined with Prometheus are
Grafana (for visualization) and the Elastic stack (Kibana and
Elasticsearch). Jaeger6 is another library for instrumenting

5Prometheus Operator: https://prometheus-operator.dev/
6jaeger: https://www.jaegertracing.io/

222

and exposing application-level meh·ics in cloud applications,
that can also be scraped by Prometheus.

Ill METHODOLOGY

As to enable tightly-coupled workloads to be elastic, we
inh·oduce Kub, an extension to Kubernetes written in Python.

A. Architectural Design

Kubis composed of three major components: the Monitor,
the Coordinator and the Executors. We choose to use these
terms as a means to separate from Kubernetes terminology
(i.e., master and workers). The Monitor is responsible for
deciding when to scale as well as the creation of new
pods. We understand that the decision to scale should be
application-specific and left to the developers as there are
trade-offs regarding the restart of a job, as it will be discussed
in Section V. Due to the need for the privileges for pod
creation, the Monitor may be deployed either inside the
Kubernetes realm or outside. When deployed as a Kubernetes
pod, it is necessary to modify the RBAC permissions from the
Monitor pod so it is able to use the Kubernetes API to deploy
other pods. If outside the Kubernetes realm, it is necessary
to ensure that it has enough access to do so, usually granting
it access to the configurations present in the host system.

In a nutshell, Kub works by being the process #1 when
the pod is started. The rationale behind that is because, in
traditional MPI applications running on Kubernetes, where
Volcano is used, the launch of a mpiexec application as
process #1 means that the job is deeply related to the status
of the job, failing or completing according to it. Here, we use
Kub for coordinating the resources for an application restart,
to avoid time wasted in restarting all the infrash·uctme.

The checkpointing and restarting procedure is application
specific and should be written according to the application's
needs. First, during checkpointing, we observe two major
patterns. Some production-level HPC applications designed
for long runs have already had support for checkpointing the
files upon the receiving of a SIGTERM signal. Others check
point at each user-defined time interval. For the restarting
procedure, it is necessary to handle the change of parameters
in input files or a change of parameters in the command line
to specify which checkpoint file should be used.

The Coordinator runs at the master pod in Volcano and
effectively acts as a gRPC server. Its main purpose is for coor
dinating the launching of MPI applications and the eventual
restarting procedure (i.e. , it does not perform calculations),
thus it is very lightweight. The Monitor acts as a gRPC client
and its role is to define when the criteria of when the scaling
process will take place, to create new pods and to tell the
Coordinator how many new pods should be expected.

In a similar fashion, the executors are the worker pods as
described by Volcano, or it can also be a newly-created pod
by the Monitor (which we define here as a "scaling pod"),
also being gRPC clients to the Coordinator. Every timestep
(usually 10 seconds), they check the status of the job with the
coordinator. This is done to avoid the automatic completion

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on January 22,2024 at 09:49:59 UTC from IEEE Xplore. Restrictions apply.

223

of the job when the application is paused, which can be due
to checkpointing in some cases.

B. Elasticity

During the horizontal scaling of the application, when one
or more pods are intended to be added, it is necessary to
coordinate among all the already existing ones. The Monitor
sends a message to the coordinator with the intended number
of nodes to scale. As executors check the job status with
the coordinators periodically, the latter changes (figuratively)
its own job status to "Scaling". With such a message, the
executors keep waiting for the checkpointing and the scaling
process to be done instead of finishing the execution. The
monitor then proceeds to create the necessary number of
pods.

Figure 2 displays the entire flowchart when performing
horizontal scaling. The newly-started pods cannot enter into
the MPI network by default as orted cannot reach them
without their IP addresses. Thus, when an additional pod
is starting, it sends a message to the coordinator with its IP

address and requests the current key pair shared among all
the pods and, upon received, the scaling pod uses it to allow
the passwordless login through orted. The coordinator keeps
track of the received IP and adds it to the list of available
pods to run. Finally, the job can be restarted. The process
repeats when it is necessary to increase the number of pods
again.

C. RPC Calls

There are many information exchanges between the master
node and the monitor or the worker nodes. In this work, we
use gRPC7 - a library developed and maintained by Google
which aids in the process of sending and dealing with RPC
calls between applications. In practice, gRPC works through
the concepts of protocol buffers: a protocol that enables
serialization/deserialization of messages in many languages.
By writing the message code directly into the protocol
language, the message can be converted (and thus used) by
languages such as Python, C++, Javascript and Go. All gRPC
clients include a stub, which contains all the available remote
procedures and is used to send a command to the server
through a channel (usually a single HTTP 2.0 connection),
and concurrent calls may be multiplexed into that channel.
The server has threads waiting for any connection and will
handle all necessary commands according to the procedures
written in the code, returning a message thereafter. Table I
displays all the calls, along the parameters, that are used in
Kub.

D. Deployment

The deployment of Kub is done through the usage of a
launcher script, written in Python, that is used for both the
Coordinator and the Executors. Based on the standardized
hostname, the launcher discerns the difference between each
other and branches the code. The Monitor is also packaged

7 gRPC: https://grpc.io/

223

as a Python script and can be run either outside or inside a
pod, as described by Subsection III-A.

We focus on the horizontal scaling in this work as a first
step for enabling elastic MPI-based HPC applications. The
vertical solution was envisioned for single-node workloads
that rely on, for example, OpenMP for thread parallelism.
Our future work will investigate the vertical scaling. The
horizontal scaling enabled by Kub is described as follows.
When running an HPC workload, a pod should already
default to use the maximum available resources available
from a node. If it is not available, one can use the horizontal
scale to increase the number of MPI ranks, with the new one
using the spare resources at the moment.

E. Coordinating pods

Aside from the elastic scaling, there is an extra benefit
to our approach. In Volcano, the Master pod has the #1
process running mpiexec, while the workers execute a
ssh daemon. A problem happens when the Master pod
executes before all workers are up. When this happens, the
master pod crashes due to not being able to reach all specified
pods. The master pod should then be restarted, in which it
will re-execute its command in the hope that all pods will
be active.

Kub avoids this problem by having the Coordinator ac
knowledge all the initial executors as active before starting
the mpiexec application. As the Coordinator knows the
number of initial executors, it will also expect to receive
a similar amount of JobIn it RPC calls. In the case of
the Executors trying to communicate before the gRPC server
is up, the fault tolerance is handled in such a way that it
will retry sending the message until a response from the
Coordinator is received.

IV. APPLICATIONS

In this section, we characterize all the target applications
for this work. In particular, there is a focus on their check
pointing process and how they were adapted to be used
together with Kub.

A. CMl

The Cloud Model 1 (CM1) [17] is a numerical model for
idealized studies of the atmosphere with a focus on deep
precipitating convection. It is actively maintained by the
National Center for Atmospheric Research (NCAR).

Spanning over 230,000 lines in total, CM1 is written
in Fortran and supports either OpenMP, for shared mem
ory computations, or MPI, for distributed memory. The
input for the application is done through the usage of
a namelist. input file which contains a very large
number of parameters regarding the model to be simulated.

In this paper, we use the default workload for CM1
that is provided with the default namelist. input file.
Similarly, we chose to use MPI for the calculations. For
MPI, the root rank is the one responsible for distributing
the load among all the available ranks and dealing with I/0

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on January 22,2024 at 09:49:59 UTC from IEEE Xplore. Restrictions apply.

224

Control Loop

r- -�
Control Loop 1

'- -·

Fig. 2: The decision flowchart of Kub when executing. One of the major benefits of Kub is to be able to use non-provisioned
infrastructure as any newly-created pod can decide to join the others by exchanging SSH keys with the Coordinator.
Furthermore, the control loops ensure that the scaling can be performed multiple times during the application's execution
time.

operations, which includes checkpointing and writing the
final results as well. In practice, these characteristics allow
CM1 to start the calculation with certain numbers of ranks
and finish it with a different number.

Checkpointing. Every predefined number of timesteps,
the root rank of CM1 outputs multiple checkpoint files
that start with the prefix cmlrst_ followed by the num
ber of the checkpoint in cardinal order. The usage of
this checkpointed file should be explicitly handled by the
namelist. input file through the irst parameter.

Algorithm. The application-specific algorithm in Kub con
sists in checking whether the root rank is executing the
code. If it is, then it iterates over the entire checkpointing
directory and its related files (that starts with cmlrst_),
looking for the most recent checkpoint based on the filename.
With the id found, a small text operation for replacing the
irst parameter on the namelist. input is done. The
application is then ready to restart with a new number of
ranks.

Modifications. There were no modifications in the vanilla
code of CM1 aside from the Makefile being changed for the

224

selection of the OpenMPI compiler wrappers.

B. GROMACS

GROMACS [18] is an open-source software suite for molec
ular dynamics simulation. One of its major popular use is
as the backend for the distributed protein folding in the
Folding@Home8 project.

As a command line application, GROMACS is built entirely
in C++ and supports a wide range of parallel and accelerating
technologies, such as OpenMP and its built-in threading, MPI
and GPUs (through the SYCL library). There is also support
for SIMD intrinsics such as AVX-256 and AVX-512.

At the core of GROMACS is the mdrun engine, respon
sible for not only executing molecular dynamics calculations
but also stochastic dynamics and energy minimization. It
takes a wide range of parameters as input. It is important
to mention that, due to the intrinsic randonmess of the
calculations, two GROMACS simulations are unlikely to yield
the same results (although both of the results will be correct),
even after stopping and resuming the same simulation.

8Folding@Home: https://foldingathome.org/

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on January 22,2024 at 09:49:59 UTC from IEEE Xplore. Restrictions apply.

⇒

⇒

⇒

⇒

⇒

⇒

225

TABLE I: List of RPCs and its parameters that are used in Kub

Call Name Parameter(s) Direction

Scale
Number of Nodes,

Monitor =? Coordinator
Mode of Scaling

RetrieveKeys Name of Node Scaling pod(s) =? Coordinator

Joblnit Name of the Node All pods =? Coordinator

activeServer (None) All executors =? Coordinator

checkpointing (None) All executors =? Coordinator

endExec (None) All executors =? Coordinator

GROMACS has been previously tested in a cloud setting
[19], in particular through the usage of the AWS heteroge
neous clusters (ARM, Intel, AMD CPUs and different GPUs)
scattered over the world, managed with Hyperbatch and
aided by the Elastic Fabric Adapter for communications
between nodes located in different regions. 53 was used for
storing intermediate files.

As a workload for this paper, we use one of the molecular
dynamics benchmarks provided by the Max Planck Institute
for Multidisciplinary Sciences9, namely the benchMEM (82
000 atoms, protein in membrane surrounded by water) bench
mark.

Checkpointing. The checkpointing in GROMACS is han
dled automatically when it receives a SIGTERM signal,
writing the files as soon as it is received and gracefully
stopping the application. The root rank is responsible for
writing the checkpointing files and also initially reading
them, distributing the data among all the available ranks.

Algorithm. The application-specific algorithm consists in
sending a SIGTERM to GROMACS when it is time for
checkpointing, waiting for it to write the files and killing the
application. To re-execute the application from checkpointed
data, an additional flag is introduced into the running com
mand.

Modifications. No modifications in the GROMACS code
were performed for this paper. The application was built
according to its documentation, with the flags to build using
MPI and to use its own FFTW.

C. PARINT benchmark

We design PARINT, a parallel distributed benchmark with
configurable arithmetic intensity. Arithmetic intensity is the
number of arithmetic operations per byte loaded from mem
ory and measures the balance between compute and memory
demands in an application [20]. PARlNT consists of an outer
loop over an array, with a variable number of operations per
array element determined by the parameter NLOOP. With
NLOOP = 1, the arithmetic intensity is low and the workload
is bound by the available memory bandwidth, while a high
value of NLOOP gives a high arithmetic intensity, scaling

9benchMEM: https://www.mpinat.mpg.de/grubmueller/bench

225

Description

This call tells the Coordinator that there are available
resources and that the Job should get ready to scale.

A newly-started pod can ask the Coordinator for its public and
private key as to establish a ssh connection for orted.

This is used by the executing pods to tell the coordinator pod
that the current pod is alive and ready for execution.
This checks whether the master is alive and whether

the working node should do any client-side checkpointing.
This is used to confirm that the checkpointing

was done by the pods.
This is used to confirm that the execution is about to

finish on the active executors.

with available compute power. PARINT is implemented in C
and parallelized using MPI.

Checkpointing. We implement checkpointing in PARINT
upon receiving a SIGUSR1 signal. Upon the arrival of this sig
nal, PARlNT will checkpoint and gracefully exit. On startup,
PARINT checks whether a checkpoint file exists and loads
it into memory before continuing with the main loop. The
cost of checkpointing depends on the data size, determined
by the ARRAY_SIZE parameter.

Algorithm. The algorithm consists in propagating a SI
GUSR1 signal to PARINT upon receiving the call for in
creasing the resources. P ARlNT then checkpoints and the
coordinator waits for the new pods to start before restarting
the execution.

V. EVALUATION

A. Infrastructure

In this study, we use a single-node cloud testbed that
consists of an Intel i7-7820X processor, with 8 cores (16
logical cores) in total, and 32 GB of DDR4 memory at 2133
MHz. In terms of storage, the system contains an Intel Optane
SSD 900p with 480 GB, a Kingston UV 400 SSD, 2x Seagate
Barracuda with 2 TB each and a Samsung EVO NVMe driver
with 1 TB, which the operating system (Ubuntu 22.04) is
running. This cloud testbed also includes an Intel I219-V
single-port 1 gigabit Ethernet controller.

Furthermore, we use Kubernetes vl.23 which is deployed
through k3d10 as it emulates a single-node system. k3d
includes by default the services for domain name resolution
(CoreDNS), networking (traefik) and monitoring (metrics
server). Furthermore, Volcano vl.7.0 was deployed in that
system

By using a single node to run multiple pods, possible delays
due to communication are mitigated and the focus shifts to
the methodology itself.

All the applications were compiled using GNU Compiler
Collection (GCC) v11.3 together with OpenMPI 4.1 when it
was necessary as a dependency. Python 3.10 was used both
on containers and system-wise for running our launcher.

10k3d: https://k3d.io

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on January 22,2024 at 09:49:59 UTC from IEEE Xplore. Restrictions apply.

����

����

����

����

��	�

����

�������������� ��������������� ���������������

��
��
	�
��
��
�

��������
������
�
��������

30 50 70

226

Overhead Comparison between Kub and Volcano-native Runs

Application: cm1
245

Application: gromacs Application: parint

170

(i) � 165

E

� 160
0
3
al 155

Lti
150

145

---r-

I
_____l_

kub

____L_

volcano
Type

�240
�
"'
� 235
c 0
:s
al 230

Lti
225

------,---

-

I � I -'----

kub volcano
Type

410

405

(i) � 400
E
i= 395 c 0
'5 390 u "'
Lti 385

380

kub volcano
Type

Fig. 3: Calculated overhead of the applications used in this work. Label Kub means that the applications were started using
the custom launcher that coordinates the scaling, although no scaling was performed, while "Volcano" is the traditional way
of using MPI applications on Kubernetes. For this experiment, each application was executed using three MPI ranks, one
per Kubernetes pod.

3:
Q. :::J -a <lJ <lJ Q. <./)

2.05

1.85

1.65

1.45

1.25

1.05

• Nloops=16

• Nloops=32

• Nloops=64

30% ScalingPoint 50% ScalingPoint 70% ScalingPoint

Fig. 4: Sensitivity test of increased compute intensity and
benefit from scaling up from 2 to 6 ranks at three scaling
points 30%, .50%, 70%, respectively.

B. Containerization of Applications

The process of building images for applications is widely
documented, thus this paper will not discuss in-depth such
process. We use Debian 11 "slim" as a base image for our con
tainers, and build them using in two stages. The slim version
of Debian removes many files related to documentation and
language support, allowing the image to weigh roughly 80
MB (in comparison to the 125MB from the full image).

The two stages process consists in having the first image to
compile the application itself with all the necessary building
tools and development libraries. With that done, the compiled
executable is transferred to the second image, which will
contain only the necessary runtime libraries for execution.

C. Overhead of K ub

We evaluate the impact of using our approach (i.e., a
launcher) in comparison to the vanilla version of the ap-

226

plications in Kubernetes. For this study, we did not perform
any type of scaling as we wanted to measure the effects of i)
the coordination among the pods and ii) the effect on thread
sharing of running a gRPC server and client in the system.

The timings were extracted from the total job duration
from start ("Running" status) until completion ("Complete"
status), and the boxplot in Figure 3 displays the results and
also the conditions in which the application was executed.

The results show that there is a slight (between 10 to 15%)
overhead for running Kub instead of the vanilla application in
Kubernetes. However, this overhead can be largely attributed
to the fact that the launcher sleeps between timesteps, so an
action that should be performed during the time that the
launcher is sleeping will be performed only at the beginning
of the next timestep - which includes checking whether all
executors are alive and/or even ending the execution for
checkpointing.

D. Scaling Experiments Overview

Sections V-E and V-F display results that are used for dif
ferent analyses. However, all the experiments were designed
and performed following similar procedures.

In particular, applications described in Section IV were
used to study the effects of elastic scaling. As previously
stated, the applications were not modified for these exper
iments; instead, an understanding of its checkpointing and
resuming procedures was necessary and implemented into
the launcher script.

In such experiments, the only factor when deciding to scale
was time; there was no monitoring of available resources due
to the hardware constraints - rather we assume that such
resources will be available at a certain point of the execution
of this application.

The speedup is calculated over a baseline time, which is a
vanilla run of the application (i.e., without scaling). Each of

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on January 22,2024 at 09:49:59 UTC from IEEE Xplore. Restrictions apply.

��� ��� ���

���

���

���

���
���

���

��� ���

���

���

���

���

���

���

������ ������ ������

��
��
��

��
	�

�������� 	
 ������������ �
 ������������ �
 ������������

��� ��� ���

���

���

���

���
���

��	
���

���

��	

���

���

���

���

���

���

���

���

���

���

���

������ ������ ������

��
��
��

��
	�

�������� 	
 ������������ �
 ������������ �
 ������������

��� ��� ���

���

���

���
���

���

���
���

��� ���

���

���

���

���

���

���

���

���

���

���

���

������ ������ ������

��
��
��

��
	�

��	�
��� � ���
�������� � ���
�������� � ���
��������

227

• baseline • 30% ScalingPoint • 50% ScalingPoint • 70% ScalingPoint • baseline • 30% ScalingPoint • 50% ScalingPoint • 70% ScalingPoint • baseline • 30% ScalingPoint • 50% ScalingPoint • 70% ScalingPoint
2.0 2.0

(a) PARINT (b) CM! (c) GROMACS

Fig. 5: The results for the elastic scaling performed by this work. Each case was executed 3 times, totalling 36 experiments
per application. The label on the X axis refers to the amount of resources that is being introduced into the application, while
the colours for each bar refer to when the scaling was performed. Refer to Sections V-F and V-G for an extensive discussion
about this figure.

the experiments discussed above had their transition between
ranks from one state to another at 30, 50 and 70% of the
baseline time. This is done to investigate the influence of
when the scaling is done. For the scenarios where the starting
point is 2 MPI Ranks, the baseline is a full execution of 2
MPI Ranks; an analogue situation happens when the starting
point is 4 MPI Ranks.

E. Sensitivity Test

This experiment uses PARINT to measure how applications
with low or high computational intensity might benefit from
the elastic scaling at different scaling points. We change the
available NLOOPS parameter, where 16 makes the bench
mark more memory-bound and 64 makes it more compute
bound. Figure 4 displays the obtained speedup over a baseline
with no scaling. As the scaling point increases, the speedup
decreases because there is less gain from scaling, but equal
overhead from checkpointing. As for arithmetic intensity,
the speedup increases as the intensity is increased showing
that compute-bound tasks benefit more from parallelism than
memory-bound tasks in our setup. Overall, a memory-bound
task would have to scale out earlier in the execution to
benefit, while a compute-bound task can scale out later in
the execution.

F. Horizontal Scaling

In these experiments, we evaluate CM1, GROMACS and
PARINT (with the NLOOPS parameter equaling 32) with our
methodology, and the results can be seen in Figure 5.

For each application, we executed three different scenar
ios, all of them dealing with the increase of the available
resources. The first scenario deals with an increase of 100%
of resources (2 to 4 MPI ranks), the second one is a 200%
increase (2 to 6 MPI ranks) and the last scenario is an increase
of 50% (4 to 6 MPI ranks). For each of these scenarios, we
evaluated the speedup at different moments of increasing
the amount of resources. The relationship among the factors
is mostly reconfirmed, and it is possible to observe one

227

more relationship between the amount of resources and the
speedup.

G. Discussions

There are two major insights to be drawn from the results
shown in Sections V-C, V-E and V-F.

1) The decision of scaling or not depends on the amount
of resources and how much time the application has
expected to finish its execution.

2) Although there is overhead from using Kub, the possi
bility of scaling might enable the mitigation of it.

The first point is clearly illustrated by the results. In gen
eral, all three applications behave similarly: at the scenarios
with the scaling point at 30% and 50% of the baseline time,
there are improvements in the execution time for the case
for scaling from 2 to 4 ranks and when scaling from 2 to 6
ranks, with the latter being usually faster than the former as
the amount of resources is increased. Where there is scaling
from 4 to 6 ranks, there is a perceived slowdown due to the
increase of resources not being high enough to compensate
for the time to stop for checkpointing and restarting.

However, this is not the case at 70% scaling point. Instead,
there is a perceived slowdown on the application, meaning
that if the application had run that much, it is better to let
it finish instead of doing all the coordination for restarting.

That said, one question that aiises is related to which
applications are feasible to apply this methodology. As seen
in Section V-E, PARINT is an ideal case and the speedup
gains increase according to the arithmetical intensity of the
application. In real applications, such as GROMACS and CM1,
such gains are limited by the amount of non-computing
operations (i. e. , I/0) that are performed during its execution.
Furthermore, such applications might also be able to stop and
restart with a different number of ranks, also distributing the
remaining load among the existing nodes.

Finally, in relation to the second point, the 10 to 15% of
overhead that is shown between Volcano and Kub can be
mitigated if a proper speedup is obtained with the resource

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on January 22,2024 at 09:49:59 UTC from IEEE Xplore. Restrictions apply.

228

increase - in particular, because the speedups increase ranges

from 30 to 80%, as seen in Figure 5 .

VI. RELATED WORKS

The emergence of converged cloud and HPC computing
has attracted increased works in understanding the feasibility

and gaps of scaling. We classified the literature related to this

paper into four categories as follows.

Feasibility and infrastructure. Several works [3], [14] ,
[21], [22] discussed the impact of using containers for HPC

workloads, and evaluate orchestrators such as Docker Swarm

and Kubernetes for such cases. In some cases, the latency

impact of using InfiniBand and TCP!IP protocols is measured

as well. Malleability is also proposed in MPI and PMlx [9] . Liu
et al. [23] evaluated the impact of multi-tenancy in different

types of containers (Docker and Singularity), considering

both UMA and NUMA types of hardware, and reaching

the conclusion that MPI applications suffer some degree of

degradation due to each container being provided with its

own networking namespace, with this effect being mitigated
for applications that don't have much inte1process commu

nication.

Malleability. There are several ongoing works in mal
leability for HPC applications. In particular, MPI Sessions

was extended to support dynamic resource allocations [9] .

Some parallel programming languages support a change in

the number of nodes. In Charm++, for example, an interface

named Converse Client Server sends and receives signals

related to the expansion or reduction, and these signals can
either be internal (the application takes its own decisions) or

from an external application.

Scaling of HPC Workloads on the cloud. There is a
trend of extending the Kubernetes scheduler to support HPC

workloads better. In particular, Misale et al. [4] proposes

a scheduler for Kubernetes called KubeFlux based on the

ideas from Flux [24]. Using NFD, KubeFlux incorporates

heterogeneous awareness for different compute resources.

Milroy et al. [5] further contributed an MPI Operator and
the Fluence plugin to Kubernetes, demonstrating scaling HPC

applications up to 3000 MPI ranks on IBM Cloud and AWS.

Performance measurements and analysis. Gupta et
al. [25] evaluated the performance and cost of selected HPC

applications across multiple HPC and Cloud platforms. They

focus on identifying suitable HPC workloads running on

the cloud and proposed optimizations to Cloud virtualization

mechanisms to match the characteristics of HPC workloads.

Sukhija et al. [26] discussed the requirements of a monitoring
tool in HPC environments and proposed the integration of

a tool called OMNI (from NERSC) with current state-of-art

tools that are used in cloud computing settings, such as

Prometheus and Grafana.

VII. CoNCLUSION

In this paper, we proposed a methodology for elastic

scaling of tightly-coupled HPC workloads on the cloud. Our

evaluation shows that the obtained speedup heavily relies

228

on the quantity of resources to be inh·oduced on the system

and also at which point the scaling will be done, as there is

a h·adeoff between checkpointing overhead and the benefits

of additional resources.

We show that the underlying mechanism for coordination

between MPI processes on containerized environments is

complex and deals with different technologies and software

to turn the idea into reality - gRPC for coordination, Kuber

netes for resource management, SSH and .MPI for mnning

tasks tlu-ough the network, Volcano as a monitoring aid for
the tasks, plus the application-level knowledge for ensuring

that the checkpointing works. Furthermore, our work can be

advanced in two future fronts of work.

The first front is monitoring (Section II-E). The current

work does not leverage resource awareness but rather builds

a fixed time model for simplicity (i.e., at 30%, 50% and 70% of a

base execution time). For the elastic scaling to be effective in

a production-level system, two factors should be considered:

i) how many resources wiU be available on the system to
an application, and ii) how much can the application benefit

from additional resources. This is widely studied in cloud

environments, especially when dealing with quality of service
for users.

The second front is to analyse more complex patterns of

scaling. This work only scaled up once although Kub can do

it multiple times through the same algorithm. However, de

signing experiments and analyzing results for such patterns

is difficult as there is a large space to explore. Finally, as one

can scale up for performance, we think that scaling down

can also play a big role in resource management and energy

consumption in the future.

ACKNOWLEDGMENTS

This research is supported by the European Commission

under the Horizon project OpenCUBE (GA-101092984).

REFERENCES

[1]]. Ejarque, R. M. Badia, L. Albertin, G. Aloisio, E. Baglione, Y. Becerra,
S. Boschert,]. R. Berlin, A. D'Anca, D. Elia et al., "Enabling dynamic
and intelligent workflows for HPC, data analytics, and AI convergence,"
Future generation computer systems, val. 134, pp. 414-429, 2022.

[2] D. Medeiros, G. Schieffer,] . Wahlgren, and I. Peng, "A GPO-Accelerated
Molecular Docking Workflow with Kubernetes and Apache Airflow,"
in Intemational Conference on High Performance Computing. Springer,
2023, pp. 193-206.

[3] A. M. Beltre, P. Saha, M. Govindaraju, A. Younge, and R. E. Grant,
"Enabling HPC workloads on cloud infrastructure using Kubernetes
container orchestration mechanisms," in 2019 IEEE/ACM International
Workshop on Contai ners and New Orchestration Paradigms for Isolated
Environments in HPC (CANOPIE-HPC). IEEE, 2019, pp. 11-20.

[4] C. Misale, D.]. Milroy et al., "Towards standard Kubernetes scheduling
interface s for converged computing;' in Smoky Mountains Computa
tional Sciences and Engineering Conference. Springer, 2021, pp. 310-
326.

[5] D.]. Milroy, C. Misale, G. Georgakoudis, T. Elengikal, A. Sarkar,
M. Drocco, T. Patki,].-S. Ye om, C. E. A. Gutierrez, D. H. Ahn et al.,
"One Step Closer to Converged Computing: Achieving Scalability with
Cloud-Native HPC," in 2022 IEEEIACM 4th International Workshop on
Containers and New Orchestration Paradigms for Isolated Environments
in HPC (CANOPIE-HPC). IEEE, 2022, pp. 57-70.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on January 22,2024 at 09:49:59 UTC from IEEE Xplore. Restrictions apply.

229

[6] D. Araujo De Medeiros, S. Markidis, and I. Peng, "LibCOS: Enabling
Converged HPC and Cloud Data Stores with MPI;' in Proceedings of the
International Conference on High Performance Computing in Asia-Pacific
Region, 2023, pp. 106-1 16.

[7] F. Rossi, V. Cardellini, F. Lo Presti, and M. Nardelli, "Ceo-distributed
efficient deployment of containers with Kubernetes;' Computer Com
munications, vol. 159, pp. 161-174, 2020.

[8] N. R. Herbst, S. Kounev, and R. H. Reussner, "Elasticity in Cloud
Computing: What It Is, and What It Is Not:' in ICAC, vol. 13, no. 2013,
2013, pp. 23-27.

[9] D. Huber, M. Streubel, I. Compres, M. Schulz, M. Schreiber, and
H. Pritchard, "Towards Dynamic Resource Management with MPI
Sessions and PMix;' in Proceedings of the 29th European MPI Users '
Group Meeting, 2022, pp. 57-67.

[10] C. Gong,]. Liu, Q. Zhang, H. Chen, and Z. Gong, "The Characteristics
of Cloud Computing;' in 2010 39th International Conference on Parallel
Processing Workshops, 2010, pp. 275-279.

[11] W. D. Mulia, N. Sehgal, S. Sohoni,]. M. Acken, C. L. Stanberry, and
D.]. Fritz, "Cloud workload characterization;' JETE Technical Review,
vol. 30, no. 5, pp. 382-397, 2013.

[12] G. M. Kurtzer, V. Socha!, and M. W. Bauer, "Singularity: Scientific
containers for mobility of compute;' PLOS ONE, vol. 12, no. 5, pp. 1 -
2 0 , 05 2017.

[13] H. Gantikow, S. Walter, and C. Reich, "Rootless Containers with Pod
man for HPC;' in High Performance Computing: ISC High Performance
2020 International Workshops. Berlin, Heidelberg: Springer-Verlag,
2020, p. 343-354.

[14] N. Marathe, A. Gandhi, and]. M. Shah, "Docker swarm and kubernetes
in cloud computing environment;' in 2019 3rd International Conference
on Trends in Electronics and Informatics (ICOEI). IEEE, 2019, pp. 179-
184.

[15] R. H. Castain, T. S. Woodall et al., 'The Open Run-Time Environ
ment (OpenRTE): A Transparent Multi-Cluster Environment for High
Performance Computing;' in Proceedings, 12th European PVMIMPI Users '
Group Meeting, Sorrento, Italy, September 2005.

[16] N. Tolaram, "cadvisor;' in Software Development with Go: Cloud-Native
Programming using Galang with Linux and Docker. Springer, 2022, pp.
347-376.

[17] G. H. Bryan and]. M. Fritsch, "A benchmark simulation
for moist nonhydrostatic numerical models;' Monthly Weather
Review, vol. 130, no. 12, pp. 2917 2928, 2002.
[Online]. Available: https:/ /j ournals.ametsoc.org/view/j ournals/mwre/
130/12/1520-0493 _2002_130 _2917 _absfmn_2.0.co_2.xml

[18] M.]. Abraham, T. Murtola, R. Schulz, S. Pall,]. C. Smith, B. Hess,
and E. Lindahl, "GROMACS: High performance molecular simulations
through multi-level parallelism from laptops to supercomputers;' Soft
wareX, vol. 1, pp. 19-25, 2015.

[19] C. Kutzner et al., "GROMACS in the Cloud: A Global Supercomputer
to Speed Up Alchemical Drug Design;' Journal of Chemical Information
and Modeling, vol. 62, no. 7, pp. 1691-1711, 2022, pMID: 35353508.
[Online]. Available: https://doi.org/10.1021/acs.jcim.2c00044

[20] G. Ofenbeck, R. Steinmann, V. Caparros, D. G. Spampinato, and
M. Piischel, "Applying the roofline model;' in 2014 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 2014, pp. 76-85.

[21] P. Saha, A. Beltre, P. Uminski, and M. Govindaraju, "Evaluation of
docker containers for scientific workloads in the cloud;' in Proceedings
of the Practice and Experience on Advanced Research Computing, 2018,
pp. 1-8.

[22] S. Abraham, A. K. Paul, R. I. S. Khan, and A. R. Butt, "On the use
of containers in high performance computing environments;' in 2020
IEEE 13th International Conference on Cloud Computing (CLOUD). IEEE,
2020, pp. 284-293.

[23] P. Liu and]. Guitar!, "Performance comparison of multi-container
deployment schemes for HPC workloads: an empirical study;' The
Journal of Supercomputing, vol. 77, pp. 6273-6312, 2021.

[24] D. H. Ahn, N. Bass, A. Chu,]. Garlick, M. Grondona, S. Herbein,
H. I. Ing6lfsson,]. Koning, T. Patki, T. R. Scogland et al., "Flux:
Overcoming scheduling challenges for exascale workflows;' Future
Generation Computer Systems, vol. 1 1 0, pp. 202-213, 2020.

[25] A. Gupta, P. Faraboschi, F. Gioachin, L. V. Kale, R. Kaufmann, B.-S.
Lee, V. March, D. Milojicic, and C. H. Suen, "Evaluating and improving
the performance and scheduling of HPC applications in cloud;' IEEE
Transactions on Cloud Computing, vol. 4, no. 3, pp. 307-321, 2014.

229

[26] N. Sukhija and E. Bautista, "Towards a framework for monitor
ing and analyzing high performance computing environments us
ing kubernetes and prometheus;' in 2019 IEEE SmartWorld, Ubiq
uitous Intelligence & Computing, Advanced & Trusted Comput
ing, Scalable Computing & Communications, Cloud & Big Data
Computing, Internet of People and Smart City Innovation (Smart
World/SCALCOMIUICIATCICBDCom!IOPISCI). IEEE, 2019, pp. 257-262.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on January 22,2024 at 09:49:59 UTC from IEEE Xplore. Restrictions apply.

