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Abstract-The conventional model of resource allocation 
in HPC systems is static. Thus, a job cannot leverage newly 
available resources in the system or release underutilized 
resources during the execution. In this paper, we present 
Kub, a methodology that enables elastic execution of HPC 

workloads on Kubernetes so that the resources allocated to 
a job can be dynamically scaled during the execution. One 
main optimization of our method is to maximize the reuse 
of the originally allocated resources so that the disruption 
to the running job can be minimized. The scaling procedure 
is coordinated among nodes through remote procedure calls 
on Kubernetes for deploying workloads in the cloud. We 
evaluate our approach using one synthetic benchmark and 
two production-level MPI-based HPC applications - GRO
MACS and CMl. Our results demonstrate that the benefits 
of adapting the allocated resources depend on the workload 
characteristics. In the tested cases, a properly chosen scaling 
point for increasing resources during execution achieved up 
to 2 x speedup. Also, the overhead of checkpointing and data 
reshuffling significantly influences the selection of optimal 
scaling points and requires application-specific knowledge. 

Index Terms-HPC, Cloud, scaling, Kubernetes, Elasticity, 
Malleability 

I. INTRODUCTION 

In recent years, two main trends have contributed to 
the rising importance of the convergence between High
performance computing (HPC) and cloud. The first trend is 
the increased compute resources on recent HPC systems, 
where a single node may be equipped with multiple high
end CPUs, GPUs, and 200-500 GB RAM. For instance, the 
Frontier supercomputer has four GPUs and lTB memory 
per node. Therefore, the conventional coarse-grained static 
resource allocation strategy on HPC systems faces challenges 
in resource utilization, and efforts in exploring fine-grained 
dynamic resource allocation strategies that have matured on 
the cloud are increasing. Secondly, workloads are evolving 
towards more complex patterns, e.g., workflows [1], [2] 
incorporating traditional scientific simulations, and machine 
learning and in-situ data analytics. Meanwhile, the availabil
ity and accessibility of compute resources in public cloud 
providers like Amazon, Google, and Microsoft have attracted 
users to explore running HPC applications on the cloud, and 
previous limitations of scaling up HPC applications on cloud 

This research is supported by the European Commission under the 
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infrastructure are being addressed in recent active research 
development [3]- [6]. 

As user-facing cloud services tend to experience spikes 
or cyclical demand in their time series, cloud-native work
loads, such as search and web serving, have shifted their 
development from a monolithic to a microservice, loosely
coupled structure. This shift was made to leverage the native 
adaptive autoscaling capabilities that are built into many de
ployment systems. These scaling decisions may be grounded 
in models that take into account application-specific metrics, 
such as the incoming number of requests, response time, 
available system resources (i.e., CPU, memory), and historical 
patterns [7]. 

Elasticity, which refers to the degree to which a system 
can adapt its resource provision to workload changes [8], 
has become a promising direction for converged cloud and 
HPC computing in recent years. In HPC systems, resource 
allocation to jobs is coarse-grained and static, so a job with 
high peak usage of resources may have to wait a long time 
until all resources become available for its execution. From 
a resource management perspective, this can block spare 
resources in an HPC system until a large task can start. 
In contrast, cloud-based systems offer fine-grained dynamic 
resource allocation to cloud-native workloads. This is because 
the cloud approach for resource allocation has developed 
and matured over the years to support the demand for 
elastic execution from cloud-native workloads. Specifically, 
HPC users and developers are seeking opportunities in elastic 
execution for high computing power, high availability, and 
cost efficiency. 

Certain types of HPC workloads, such as deep learning, 
can make extensive use of this elasticity. This owes to the fact 
that such workloads and related applications (i.e., TensorFlow 
and PyTorch) are already structured in a way that shares the 
training/predicting load in batches among the active nodes. 
This makes solutions such as Elastic Horovod1, which detects 
new nodes in real-time, feasible to use. However, the same 
cannot be directly applied to tightly-coupled workloads that 
are built atop Message Parsing Interface (MPI) for distributed
memory programming. Traditional HPC schedulers, such as 
SLURM, do not support the dynamic change of nodes in their 
resource allocation to a job [9]. Once a job starts running, 

1 Elastic Horovod: https://horovod.readthedocs.io/ 
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adding new node resources is cumbersome, if not impossible. 
This means that a full start/stop process is necessary for 
changing the number of nodes, and the previously allocated 
resource will be lost, and time should be spent waiting for a 
new allocation if that was not previously available. 

This work aims to address the problem of elastic scal
ing of HPC workloads by reusing the already provisioned 
infrastructure, with a focus on the cloud-containerized en
vironment. We achieve this through the usage of the de
facto industry standard container orchestrator Kubernetes 
and multiple representative HPC workloads that allow the 
understanding of the gap from achieving elastic execution. 

In this paper, these are our major contributions: 
• We identify technical challenges of running MPI-based 

applications with a state-of-art container orchestrator. 
• We propose an approach for elastic horizontal scaling 

of tightly-coupled workloads, in particular ones that are 
using MPI in a containerized context. 

• We implement the proposed approach and quantify 
the overhead and its benefits in the HPC applications 
GROMACS and CMl. 

• We discuss the application requirements and the trade
offs of elastic scaling of HPC applications in container
ized environments. 

This paper is structured as follows. Section II discusses 
the current state-of-art means for executing HPC workloads 
on the cloud, including some cloud-first technologies that 
are later used in this paper. Section III shows our ap
proach for elastic scaling workloads and the details of our 
implementation. Section IV dives into the specifics of the 
applications workloads we are using for this work, while 
Section V displays our setup and results. Section VI briefly 
discusses some related works while Section VII consists of 
the conclusions and our future works. 

II. BACKGROUND 

In this section, we describe the differences between HPC 
and Cloud workloads and introduce the building blocks for 
enabling elastic execution in this work. 

A. HPC and Cloud Workloads 

Cloud computing applications tend to be loosely-coupled 
and fault tolerant [10]. User-facing applications should be 
able to scale up and down according to demand, and tech
niques such as load balancing, where the processing batch 
can be directed to a less-stressed node, helps with the 
design of such applications. Some of the representative cloud 
workloads are search, data streaming, web serving, and in
memory databases [11]. 

Meanwhile, high-performance computing workloads tend 
to be tightly-coupled as there is usually an interdependence 
between the calculations being distributed among the nodes. 
For instance, the CORAL-2 benchmark suite contains repre
sentative HPC workloads2, which includes molecular dynam
ics, quantum Monte Carlo, fluid simulation and cosmology. 

2Coral-2 benchmarks: https://asc.llnl.gov/coral-2-benchmarks 
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The Message Parsing Interface (MPI) is the dominant 
approach for communication in HPC workloads, as a means 
for performing distributed calculations over a large number 
of compute nodes. In many cases, these calculations are 
explicitly or implicitly blocking operations because their 
execution time is determined by the slowest node due to 
data dependencies. Although MPI has introduced some mech
anisms recently to support dynamically adding or removing 
members to a communicator, the schedulers on HPC systems 
have little support to change node allocation to a job once it 
starts. Therefore, in practice, this means that the only way of 
changing the number of allocated nodes during the execution 
is through the process of restarting the application. 

B. Containers and Orchestrators 

Containers are a solution to isolate the resources of tasks 
executing in the same node. In Linux-based systems, the 
isolation of resources is implemented through the cgroups 
feature. Docker is the industry standard for containers; 
however, due to security concerns (i.e., the container runs 
as root by default), other container technologies such as 
Singularity [12] and Podman [13] have been more used 
in HPC systems. In the case of Docker, the container is 
defined by a Dockerfile which contains the base image (i.e., 
an operating system, such as Alpine Linux or Debian) to 
be used and a series of deterministic commands related to 
the application that one desires to deploy - this includes the 
installation of dependencies, compilation of software/libraries 
and setting environment variables. 

These images are deployed by orchestrators, which are 
responsible for not only distributing the containers among 
the nodes, but also monitoring them and ensuring that their 
characteristics - such as minimum number of replicas - stay 
consistent with the desired number by the user. Some of the 
popular orchestrators are Kubernetes, OpenShift Container 
Platform and Docker Swarm, with all of them being tested 
in HPC environments [14]. 

A Kubernetes cluster consists of at least two nodes, one 
being the master and the other being a worker node. The 
former runs decoupled applications responsible for the com
munication interface between the user and the cluster (named 
api-server), the scheduler, an etcd object storage for storing 
data and metadata from the cluster and a controller manager. 
Inside every worker node, there is an application named 
kubelet, responsible for dealing with incoming requests from 
the api-server, such as executing pods and exposing pod 
metrics for scrappers. 

The basic unit within a Kubernetes cluster is the pod 
- an abstraction of resources for executing a container. 
Computational resources are defined as the time used by 
the CPU and the Memory. A worker node may contain 
one or more pods at the same time, and similarly, a pod 
may have one or more containers executing within the same 
resource domain. A set of equal pods can be associated as 
a ReplicaSet, where the controller manager ensures that the 
desired number of pods will be running in case of failure. 

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on January 22,2024 at 09:49:59 UTC from IEEE Xplore.  Restrictions apply. 
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Deployments are an extended ReplicaSet with more useful 
features. 

Architecturally, the idea of a pod was developed for tasks 
that should run for an indefinite amount of time. For time
limited, finite tasks, the concept of jobs is used. In practice, 
a job is marked as completed when a certain number of 
pods have been executed and successfully finished. In this 
case, the pods do not necessarily need to execute and finish 
at the same time, although in some cases (e.g., MPI-based 
workloads) they do. 

By default, each pod has its own IP inside the Kubernetes 
network and can freely communicate with other pods unless 
otherwise defined. Aside from the IP, a pod can reach others 
through the usage of the built-in domain name server records 
which is deterministic and based on variables such as the 
name of the pod and its namespace. However, as either the IP 

or the DNS record might be mutable, Kubernetes introduces 
the concept of service as a means to gather a set of pods 
providing similar service (i.e., user-facing) and, at the same 
time, exposing it outside the network. 

Any kind of Kubernetes-defined or custom-defined re
sources are defined through the usage of YAML files. The 
schema used by such files through Kubernetes is standardized 
and checked for errors before execution. Upon acceptance of 
the YAML file, the default Kubernetes scheduler first looks 
for feasible nodes and then, among the returned group of 
nodes, checks for the most viable ones through scoring. 

Finally, the security mechanism in Kubernetes is performed 
through a system called RBAC (role-based access control). 
One may define a certain role that is able to get, create, delete 
or edit certain types of resources and then assign such role 
to, for example, a pod. By default, a pod is not able to create 
other pods or modify cluster-level settings. 

C. Autoscaling 

In cloud settings, autoscaling means changing the amount 
of resources of an existing allocation. This may be through 
the change of already allocated CPU and memory (in this 
case, vertical scaling) or through the increment or decre
ment of the number of available nodes for the application 
(horizontal scaling). 

Kubernetes provides a built-in vertical pod autoscaler 
(VPA) and a horizontal pod autoscaler (HPA) by default. 
However, as these tools were originally designed for cloud 
applications, there are some problems when trying to use 
them with HPC workloads. First, the VPA consists of three 
components, namely the admission controller, recommender 
and updater; based on the historical pattern of CPU/Memory 
usage of the application, the recommender outputs a value 
for CPU and Memory. If the recommended value is too 
different from the used one, the pod is evicted and restarted. 
This is because Kubernetes currently does not allow changes 
in the requested resources of a pod unless the pod is 
restarted. While there are some ongoing works to address this 
limitation and change the allocated CPU/Memory resources 
dynamically, this is currently not in production versions. 
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The built-in HPA queries the resource utilization period
ically and according to user-defined policies, such as the 
threshold for a certain metric, it decides to scale up or down. 
The metrics can be either directly related to physical resource 
usage (i.e., CPU or Memory) or application-level metrics, such 
as the number of incoming requests. However, in tightly
coupled workloads, the built-in horizontal scaler has no effect 
at all. If one is running an MPI application, for example, the 
newly started rank would execute the same calculations by 
itself, being unable to join dynamically the already existent 
communicator. 

D. Volcano and MPI 

Volcano3 is a batch system for Kubernetes, providing tools 
for certain types of workloads that run on frameworks 
such as TensorFlow, Spark and MPI. Kubeflow4 is another 
framework, with a strong focus on machine learning, that 
enables one to run MPI workloads on the cloud. 

The YAML file for deploying a Volcano MPI job consists 
in defining a VolcanoJob with two types of pods: one 
named master and another that has a worker suffix. 
Additionally, the YAML file also specifies two plugins that 
are necessary to run MPI workloads, the svc and the ssh 
plugins. The former is responsible to enable all the pods 
within a job to visit each other by domain name and by 
default establish a policy of not allowing any other pod 
outside service to communicate with that network of pods. 
Additionally, it creates a list of all the working pods that 
will execute. The second plugin generates a key pair locally 
and mounts /root/. ssh as a read-only directory at every 
Volcano-created pod. This ensures that all the pods will 
have ssh passwordless authentication between each other, 
a prerequisite to smoothly run MPI jobs. There is currently 
an "MPI plugin" for Volcano which can be used instead of 
the svc and ssh plugins, in practice, replacing both, but 
not allowing the same degree of flexibility required by this 
paper. 

OpenRTE [15], part of the Open MPI project, is the heart 
of how Volcano executes its MPI jobs. As its name implies, 
OpenRTE is a runtime environment that provides services 
related to process management, communication coordination 
and resource allocation. When launching a process through 
the mpiexec wrapper, one may specify which hosts are 
necessary to connect - this is collected by Volcano, and Open
RTE interacts with a daemon at every node - named orted
through a defined communication protocol to coordinate the 
launch and information such as launch path, environment 
variables and command line arguments. OpenRTE and orted 
keep an interaction for message passing and monitoring until 
the end of the execution. 

Figure 1 displays the structure of a Volcano system The 
master pod is responsible to start the MPI jobs, while 
the workers execute the workload itself. In general, the 

3Volcano: https://volcano.sh 
4Kubeflow: https://www.kubeflow.org/ 
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Fig. 1: The overall structure of a Volcano deployment in 
Kubernetes. O Defined through a YAML file, the job is 
communicated to the api-server (or kube-api). 8 This call 
is intercepted by Volcano's admission controller that checks 
whether the YAML has all required fields and contains no 
enor. O If everything is correct, data is sent to the scheduler 
which verifies whether it is possible to allocate the job. 
O When the resources are available, the kubelets inside 
each node are ordered to create the pod allocation with the 
desired containers for the job. A pod can contain one or more 
containers, and nodes can also run more than one pod. O 
The "master" pod awaits all "worker" pods to be active and 
open their ssh daemon. When they are ready, orted starts 
the MPI job among them O All the pods are encapsulated by 
a "service" type, so they can communicate using each other 
by domain. Volcano's scheduler and controller, responsible 
for monitoring the jobs, effectively replace the ones included 
in Kubernetes by default. 

worker-0 pod is considered the root rank of the MPI 
execution. While the spawning process of containers might 
take longer for some, the master node will keep crashing 
and restarting until orted can successfully connect with 
all the listed nodes. After the execution, the job is marked as 
Complete at the Kubernetes cluster. 

E. Resource Monitoring 

The kubelet that runs on every node collects informa
tion regarding CPU and Memory through cAdvisor [16], 
a profiling application maintained by Google that is in
tended for Docker containers. The Prometheus Operator5 
is a Kubernetes application that is able to scrape meh·ics 
not only from all the kubelets, but also from the master 
node, exposing them for further usage in ]SON format. By 
connecting to the web API of Prometheus, one is capable of 
retrieving the time-series and history of the metrics, as well 
as checking the current status of a node in near-real time. 
Other applications that are combined with Prometheus are 
Grafana (for visualization) and the Elastic stack (Kibana and 
Elasticsearch). Jaeger6 is another library for instrumenting 

5Prometheus Operator: https://prometheus-operator.dev/ 
6jaeger: https://www.jaegertracing.io/ 
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and exposing application-level meh·ics in cloud applications, 
that can also be scraped by Prometheus. 

Ill METHODOLOGY 

As to enable tightly-coupled workloads to be elastic, we 
inh·oduce Kub, an extension to Kubernetes written in Python. 

A. Architectural Design 

Kubis composed of three major components: the Monitor, 
the Coordinator and the Executors. We choose to use these 
terms as a means to separate from Kubernetes terminology 
(i.e., master and workers). The Monitor is responsible for 
deciding when to scale as well as the creation of new 
pods. We understand that the decision to scale should be 
application-specific and left to the developers as there are 
trade-offs regarding the restart of a job, as it will be discussed 
in Section V. Due to the need for the privileges for pod 
creation, the Monitor may be deployed either inside the 
Kubernetes realm or outside. When deployed as a Kubernetes 
pod, it is necessary to modify the RBAC permissions from the 
Monitor pod so it is able to use the Kubernetes API to deploy 
other pods. If outside the Kubernetes realm, it is necessary 
to ensure that it has enough access to do so, usually granting 
it access to the configurations present in the host system. 

In a nutshell, Kub works by being the process #1 when 
the pod is started. The rationale behind that is because, in 
traditional MPI applications running on Kubernetes, where 
Volcano is used, the launch of a mpiexec application as 
process #1 means that the job is deeply related to the status 
of the job, failing or completing according to it. Here, we use 
Kub for coordinating the resources for an application restart, 
to avoid time wasted in restarting all the infrash·uctme. 

The checkpointing and restarting procedure is application
specific and should be written according to the application's 
needs. First, during checkpointing, we observe two major 
patterns. Some production-level HPC applications designed 
for long runs have already had support for checkpointing the 
files upon the receiving of a SIGTERM signal. Others check
point at each user-defined time interval. For the restarting 
procedure, it is necessary to handle the change of parameters 
in input files or a change of parameters in the command line 
to specify which checkpoint file should be used. 

The Coordinator runs at the master pod in Volcano and 
effectively acts as a gRPC server. Its main purpose is for coor
dinating the launching of MPI applications and the eventual 
restarting procedure (i.e. , it does not perform calculations), 
thus it is very lightweight. The Monitor acts as a gRPC client 
and its role is to define when the criteria of when the scaling 
process will take place, to create new pods and to tell the 
Coordinator how many new pods should be expected. 

In a similar fashion, the executors are the worker pods as 
described by Volcano, or it can also be a newly-created pod 
by the Monitor (which we define here as a "scaling pod"), 
also being gRPC clients to the Coordinator. Every timestep 
(usually 10 seconds), they check the status of the job with the 
coordinator. This is done to avoid the automatic completion 
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of the job when the application is paused, which can be due 
to checkpointing in some cases. 

B. Elasticity 

During the horizontal scaling of the application, when one 
or more pods are intended to be added, it is necessary to 
coordinate among all the already existing ones. The Monitor 
sends a message to the coordinator with the intended number 
of nodes to scale. As executors check the job status with 
the coordinators periodically, the latter changes (figuratively) 
its own job status to "Scaling". With such a message, the 
executors keep waiting for the checkpointing and the scaling 
process to be done instead of finishing the execution. The 
monitor then proceeds to create the necessary number of 
pods. 

Figure 2 displays the entire flowchart when performing 
horizontal scaling. The newly-started pods cannot enter into 
the MPI network by default as orted cannot reach them 
without their IP addresses. Thus, when an additional pod 
is starting, it sends a message to the coordinator with its IP 

address and requests the current key pair shared among all 
the pods and, upon received, the scaling pod uses it to allow 
the passwordless login through orted. The coordinator keeps 
track of the received IP and adds it to the list of available 
pods to run. Finally, the job can be restarted. The process 
repeats when it is necessary to increase the number of pods 
again. 

C. RPC Calls 

There are many information exchanges between the master 
node and the monitor or the worker nodes. In this work, we 
use gRPC7 - a library developed and maintained by Google 
which aids in the process of sending and dealing with RPC 
calls between applications. In practice, gRPC works through 
the concepts of protocol buffers: a protocol that enables 
serialization/deserialization of messages in many languages. 
By writing the message code directly into the protocol 
language, the message can be converted (and thus used) by 
languages such as Python, C++, Javascript and Go. All gRPC 
clients include a stub, which contains all the available remote 
procedures and is used to send a command to the server 
through a channel (usually a single HTTP 2.0 connection), 
and concurrent calls may be multiplexed into that channel. 
The server has threads waiting for any connection and will 
handle all necessary commands according to the procedures 
written in the code, returning a message thereafter. Table I 
displays all the calls, along the parameters, that are used in 
Kub. 

D. Deployment 

The deployment of Kub is done through the usage of a 
launcher script, written in Python, that is used for both the 
Coordinator and the Executors. Based on the standardized 
hostname, the launcher discerns the difference between each 
other and branches the code. The Monitor is also packaged 

7 gRPC: https://grpc.io/ 
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as a Python script and can be run either outside or inside a 
pod, as described by Subsection III-A. 

We focus on the horizontal scaling in this work as a first 
step for enabling elastic MPI-based HPC applications. The 
vertical solution was envisioned for single-node workloads 
that rely on, for example, OpenMP for thread parallelism. 
Our future work will investigate the vertical scaling. The 
horizontal scaling enabled by Kub is described as follows. 
When running an HPC workload, a pod should already 
default to use the maximum available resources available 
from a node. If it is not available, one can use the horizontal 
scale to increase the number of MPI ranks, with the new one 
using the spare resources at the moment. 

E. Coordinating pods 

Aside from the elastic scaling, there is an extra benefit 
to our approach. In Volcano, the Master pod has the #1 
process running mpiexec, while the workers execute a 
ssh daemon. A problem happens when the Master pod 
executes before all workers are up. When this happens, the 
master pod crashes due to not being able to reach all specified 
pods. The master pod should then be restarted, in which it 
will re-execute its command in the hope that all pods will 
be active. 

Kub avoids this problem by having the Coordinator ac
knowledge all the initial executors as active before starting 
the mpiexec application. As the Coordinator knows the 
number of initial executors, it will also expect to receive 
a similar amount of JobIn it RPC calls. In the case of 
the Executors trying to communicate before the gRPC server 
is up, the fault tolerance is handled in such a way that it 
will retry sending the message until a response from the 
Coordinator is received. 

IV. APPLICATIONS 

In this section, we characterize all the target applications 
for this work. In particular, there is a focus on their check
pointing process and how they were adapted to be used 
together with Kub. 

A. CMl 

The Cloud Model 1 (CM1) [17] is a numerical model for 
idealized studies of the atmosphere with a focus on deep 
precipitating convection. It is actively maintained by the 
National Center for Atmospheric Research (NCAR). 

Spanning over 230,000 lines in total, CM1 is written 
in Fortran and supports either OpenMP, for shared mem
ory computations, or MPI, for distributed memory. The 
input for the application is done through the usage of 
a namelist. input file which contains a very large 
number of parameters regarding the model to be simulated. 

In this paper, we use the default workload for CM1 
that is provided with the default namelist. input file. 
Similarly, we chose to use MPI for the calculations. For 
MPI, the root rank is the one responsible for distributing 
the load among all the available ranks and dealing with I/0 
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Control Loop 

r- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -� 
Control Loop 1 

'- - - - - - - - - - - - - - - - - - - - - - - - - - - -· 

Fig. 2: The decision flowchart of Kub when executing. One of the major benefits of Kub is to be able to use non-provisioned 
infrastructure as any newly-created pod can decide to join the others by exchanging SSH keys with the Coordinator. 
Furthermore, the control loops ensure that the scaling can be performed multiple times during the application's execution 
time. 

operations, which includes checkpointing and writing the 
final results as well. In practice, these characteristics allow 
CM1 to start the calculation with certain numbers of ranks 
and finish it with a different number. 

Checkpointing. Every predefined number of timesteps, 
the root rank of CM1 outputs multiple checkpoint files 
that start with the prefix cmlrst_ followed by the num
ber of the checkpoint in cardinal order. The usage of 
this checkpointed file should be explicitly handled by the 
namelist. input file through the irst parameter. 

Algorithm. The application-specific algorithm in Kub con
sists in checking whether the root rank is executing the 
code. If it is, then it iterates over the entire checkpointing 
directory and its related files (that starts with cmlrst_), 
looking for the most recent checkpoint based on the filename. 
With the id found, a small text operation for replacing the 
irst parameter on the namelist. input is done. The 
application is then ready to restart with a new number of 
ranks. 

Modifications. There were no modifications in the vanilla 
code of CM1 aside from the Makefile being changed for the 
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selection of the OpenMPI compiler wrappers. 

B. GROMACS 

GROMACS [18] is an open-source software suite for molec
ular dynamics simulation. One of its major popular use is 
as the backend for the distributed protein folding in the 
Folding@Home8 project. 

As a command line application, GROMACS is built entirely 
in C++ and supports a wide range of parallel and accelerating 
technologies, such as OpenMP and its built-in threading, MPI 
and GPUs (through the SYCL library). There is also support 
for SIMD intrinsics such as AVX-256 and AVX-512. 

At the core of GROMACS is the mdrun engine, respon
sible for not only executing molecular dynamics calculations 
but also stochastic dynamics and energy minimization. It 
takes a wide range of parameters as input. It is important 
to mention that, due to the intrinsic randonmess of the 
calculations, two GROMACS simulations are unlikely to yield 
the same results (although both of the results will be correct), 
even after stopping and resuming the same simulation. 

8Folding@Home: https://foldingathome.org/ 
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TABLE I: List of RPCs and its parameters that are used in Kub 

Call Name Parameter( s) Direction 

Scale 
Number of Nodes, 

Monitor =? Coordinator 
Mode of Scaling 

RetrieveKeys Name of Node Scaling pod(s) =? Coordinator 

Joblnit Name of the Node All pods =? Coordinator 

activeServer (None) All executors =? Coordinator 

checkpointing (None) All executors =? Coordinator 

endExec (None) All executors =? Coordinator 

GROMACS has been previously tested in a cloud setting 
[19], in particular through the usage of the AWS heteroge
neous clusters (ARM, Intel, AMD CPUs and different GPUs) 
scattered over the world, managed with Hyperbatch and 
aided by the Elastic Fabric Adapter for communications 
between nodes located in different regions. 53 was used for 
storing intermediate files. 

As a workload for this paper, we use one of the molecular 
dynamics benchmarks provided by the Max Planck Institute 
for Multidisciplinary Sciences9, namely the benchMEM (82 
000 atoms, protein in membrane surrounded by water) bench
mark. 

Checkpointing. The checkpointing in GROMACS is han
dled automatically when it receives a SIGTERM signal, 
writing the files as soon as it is received and gracefully 
stopping the application. The root rank is responsible for 
writing the checkpointing files and also initially reading 
them, distributing the data among all the available ranks. 

Algorithm. The application-specific algorithm consists in 
sending a SIGTERM to GROMACS when it is time for 
checkpointing, waiting for it to write the files and killing the 
application. To re-execute the application from checkpointed 
data, an additional flag is introduced into the running com
mand. 

Modifications. No modifications in the GROMACS code 
were performed for this paper. The application was built 
according to its documentation, with the flags to build using 
MPI and to use its own FFTW. 

C. PARINT benchmark 

We design PARINT, a parallel distributed benchmark with 
configurable arithmetic intensity. Arithmetic intensity is the 
number of arithmetic operations per byte loaded from mem
ory and measures the balance between compute and memory 
demands in an application [20]. PARlNT consists of an outer 
loop over an array, with a variable number of operations per 
array element determined by the parameter NLOOP. With 
NLOOP = 1, the arithmetic intensity is low and the workload 
is bound by the available memory bandwidth, while a high 
value of NLOOP gives a high arithmetic intensity, scaling 

9benchMEM: https://www.mpinat.mpg.de/grubmueller/bench 
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Description 

This call tells the Coordinator that there are available 
resources and that the Job should get ready to scale. 

A newly-started pod can ask the Coordinator for its public and 
private key as to establish a ssh connection for orted. 

This is used by the executing pods to tell the coordinator pod 
that the current pod is alive and ready for execution. 
This checks whether the master is alive and whether 

the working node should do any client-side checkpointing. 
This is used to confirm that the checkpointing 

was done by the pods. 
This is used to confirm that the execution is about to 

finish on the active executors. 

with available compute power. PARINT is implemented in C 
and parallelized using MPI. 

Checkpointing. We implement checkpointing in PARINT 
upon receiving a SIGUSR1 signal. Upon the arrival of this sig
nal, PARlNT will checkpoint and gracefully exit. On startup, 
PARINT checks whether a checkpoint file exists and loads 
it into memory before continuing with the main loop. The 
cost of checkpointing depends on the data size, determined 
by the ARRAY_SIZE parameter. 

Algorithm. The algorithm consists in propagating a SI
GUSR1 signal to PARINT upon receiving the call for in
creasing the resources. P ARlNT then checkpoints and the 
coordinator waits for the new pods to start before restarting 
the execution. 

V. EVALUATION 

A. Infrastructure 

In this study, we use a single-node cloud testbed that 
consists of an Intel i7-7820X processor, with 8 cores (16 
logical cores) in total, and 32 GB of DDR4 memory at 2133 
MHz. In terms of storage, the system contains an Intel Optane 
SSD 900p with 480 GB, a Kingston UV 400 SSD, 2x Seagate 
Barracuda with 2 TB each and a Samsung EVO NVMe driver 
with 1 TB, which the operating system (Ubuntu 22.04) is 
running. This cloud testbed also includes an Intel I219-V 
single-port 1 gigabit Ethernet controller. 

Furthermore, we use Kubernetes vl.23 which is deployed 
through k3d10 as it emulates a single-node system. k3d 
includes by default the services for domain name resolution 
(CoreDNS), networking (traefik) and monitoring (metrics
server). Furthermore, Volcano vl.7.0 was deployed in that 
system 

By using a single node to run multiple pods, possible delays 
due to communication are mitigated and the focus shifts to 
the methodology itself. 

All the applications were compiled using GNU Compiler 
Collection (GCC) v11.3 together with OpenMPI 4.1 when it 
was necessary as a dependency. Python 3.10 was used both 
on containers and system-wise for running our launcher. 

10k3d: https://k3d.io 
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Fig. 3: Calculated overhead of the applications used in this work. Label Kub means that the applications were started using 
the custom launcher that coordinates the scaling, although no scaling was performed, while "Volcano" is the traditional way 
of using MPI applications on Kubernetes. For this experiment, each application was executed using three MPI ranks, one 
per Kubernetes pod. 
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Fig. 4: Sensitivity test of increased compute intensity and 
benefit from scaling up from 2 to 6 ranks at three scaling 
points 30%, .50%, 70%, respectively. 

B. Containerization of Applications 

The process of building images for applications is widely 
documented, thus this paper will not discuss in-depth such 
process. We use Debian 11 "slim" as a base image for our con
tainers, and build them using in two stages. The slim version 
of Debian removes many files related to documentation and 
language support, allowing the image to weigh roughly 80 
MB (in comparison to the 125MB from the full image). 

The two stages process consists in having the first image to 
compile the application itself with all the necessary building 
tools and development libraries. With that done, the compiled 
executable is transferred to the second image, which will 
contain only the necessary runtime libraries for execution. 

C. Overhead of K ub 

We evaluate the impact of using our approach (i.e., a 
launcher) in comparison to the vanilla version of the ap-
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plications in Kubernetes. For this study, we did not perform 
any type of scaling as we wanted to measure the effects of i) 
the coordination among the pods and ii) the effect on thread
sharing of running a gRPC server and client in the system. 

The timings were extracted from the total job duration 
from start ("Running" status) until completion ("Complete" 
status), and the boxplot in Figure 3 displays the results and 
also the conditions in which the application was executed. 

The results show that there is a slight (between 10 to 15%) 
overhead for running Kub instead of the vanilla application in 
Kubernetes. However, this overhead can be largely attributed 
to the fact that the launcher sleeps between timesteps, so an 
action that should be performed during the time that the 
launcher is sleeping will be performed only at the beginning 
of the next timestep - which includes checking whether all 
executors are alive and/or even ending the execution for 
checkpointing. 

D. Scaling Experiments Overview 

Sections V-E and V-F display results that are used for dif
ferent analyses. However, all the experiments were designed 
and performed following similar procedures. 

In particular, applications described in Section IV were 
used to study the effects of elastic scaling. As previously 
stated, the applications were not modified for these exper
iments; instead, an understanding of its checkpointing and 
resuming procedures was necessary and implemented into 
the launcher script. 

In such experiments, the only factor when deciding to scale 
was time; there was no monitoring of available resources due 
to the hardware constraints - rather we assume that such 
resources will be available at a certain point of the execution 
of this application. 

The speedup is calculated over a baseline time, which is a 
vanilla run of the application (i.e., without scaling). Each of 
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• baseline • 30% ScalingPoint • 50% ScalingPoint • 70% ScalingPoint • baseline • 30% ScalingPoint • 50% ScalingPoint • 70% ScalingPoint • baseline • 30% ScalingPoint • 50% ScalingPoint • 70% ScalingPoint 
2.0 2.0 

(a) PARINT (b) CM! (c) GROMACS 

Fig. 5: The results for the elastic scaling performed by this work. Each case was executed 3 times, totalling 36 experiments 
per application. The label on the X axis refers to the amount of resources that is being introduced into the application, while 
the colours for each bar refer to when the scaling was performed. Refer to Sections V-F and V-G for an extensive discussion 
about this figure. 

the experiments discussed above had their transition between 
ranks from one state to another at 30, 50 and 70% of the 
baseline time. This is done to investigate the influence of 
when the scaling is done. For the scenarios where the starting 
point is 2 MPI Ranks, the baseline is a full execution of 2 
MPI Ranks; an analogue situation happens when the starting 
point is 4 MPI Ranks. 

E. Sensitivity Test 

This experiment uses PARINT to measure how applications 
with low or high computational intensity might benefit from 
the elastic scaling at different scaling points. We change the 
available NLOOPS parameter, where 16 makes the bench
mark more memory-bound and 64 makes it more compute
bound. Figure 4 displays the obtained speedup over a baseline 
with no scaling. As the scaling point increases, the speedup 
decreases because there is less gain from scaling, but equal 
overhead from checkpointing. As for arithmetic intensity, 
the speedup increases as the intensity is increased showing 
that compute-bound tasks benefit more from parallelism than 
memory-bound tasks in our setup. Overall, a memory-bound 
task would have to scale out earlier in the execution to 
benefit, while a compute-bound task can scale out later in 
the execution. 

F. Horizontal Scaling 

In these experiments, we evaluate CM1, GROMACS and 
PARINT (with the NLOOPS parameter equaling 32) with our 
methodology, and the results can be seen in Figure 5. 

For each application, we executed three different scenar
ios, all of them dealing with the increase of the available 
resources. The first scenario deals with an increase of 100% 
of resources (2 to 4 MPI ranks), the second one is a 200% 
increase (2 to 6 MPI ranks) and the last scenario is an increase 
of 50% (4 to 6 MPI ranks). For each of these scenarios, we 
evaluated the speedup at different moments of increasing 
the amount of resources. The relationship among the factors 
is mostly reconfirmed, and it is possible to observe one 
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more relationship between the amount of resources and the 
speedup. 

G. Discussions 

There are two major insights to be drawn from the results 
shown in Sections V-C, V-E and V-F. 

1) The decision of scaling or not depends on the amount 
of resources and how much time the application has 
expected to finish its execution. 

2) Although there is overhead from using Kub, the possi
bility of scaling might enable the mitigation of it. 

The first point is clearly illustrated by the results. In gen
eral, all three applications behave similarly: at the scenarios 
with the scaling point at 30% and 50% of the baseline time, 
there are improvements in the execution time for the case 
for scaling from 2 to 4 ranks and when scaling from 2 to 6 
ranks, with the latter being usually faster than the former as 
the amount of resources is increased. Where there is scaling 
from 4 to 6 ranks, there is a perceived slowdown due to the 
increase of resources not being high enough to compensate 
for the time to stop for checkpointing and restarting. 

However, this is not the case at 70% scaling point. Instead, 
there is a perceived slowdown on the application, meaning 
that if the application had run that much, it is better to let 
it finish instead of doing all the coordination for restarting. 

That said, one question that aiises is related to which 
applications are feasible to apply this methodology. As seen 
in Section V-E, PARINT is an ideal case and the speedup 
gains increase according to the arithmetical intensity of the 
application. In real applications, such as GROMACS and CM1, 
such gains are limited by the amount of non-computing 
operations (i. e. ,  I/0) that are performed during its execution. 
Furthermore, such applications might also be able to stop and 
restart with a different number of ranks, also distributing the 
remaining load among the existing nodes. 

Finally, in relation to the second point, the 10 to 15% of 
overhead that is shown between Volcano and Kub can be 
mitigated if a proper speedup is obtained with the resource 

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on January 22,2024 at 09:49:59 UTC from IEEE Xplore.  Restrictions apply. 



228

increase - in particular, because the speedups increase ranges 

from 30 to 80%, as seen in Figure 5 .  

VI. RELATED WORKS 

The emergence of converged cloud and HPC computing 
has attracted increased works in understanding the feasibility 

and gaps of scaling. We classified the literature related to this 

paper into four categories as follows. 

Feasibility and infrastructure. Several works [3], [14] ,  
[21],  [22] discussed the impact of using containers for HPC 

workloads, and evaluate orchestrators such as Docker Swarm 

and Kubernetes for such cases. In some cases, the latency 

impact of using InfiniBand and TCP!IP protocols is measured 

as well. Malleability is also proposed in MPI and PMlx [9] . Liu 
et al. [23] evaluated the impact of multi-tenancy in different 

types of containers (Docker and Singularity), considering 

both UMA and NUMA types of hardware, and reaching 

the conclusion that MPI applications suffer some degree of 

degradation due to each container being provided with its 

own networking namespace, with this effect being mitigated 
for applications that don't have much inte1process commu

nication. 

Malleability. There are several ongoing works in mal
leability for HPC applications. In particular, MPI Sessions 

was extended to support dynamic resource allocations [9] .  

Some parallel programming languages support a change in 

the number of nodes. In Charm++, for example, an interface 

named Converse Client Server sends and receives signals 

related to the expansion or reduction, and these signals can 
either be internal (the application takes its own decisions) or 

from an external application. 

Scaling of HPC Workloads on the cloud. There is a 
trend of extending the Kubernetes scheduler to support HPC 

workloads better. In particular, Misale et al. [ 4] proposes 

a scheduler for Kubernetes called KubeFlux based on the 

ideas from Flux [24]. Using NFD, KubeFlux incorporates 

heterogeneous awareness for different compute resources. 

Milroy et al. [5] further contributed an MPI Operator and 
the Fluence plugin to Kubernetes, demonstrating scaling HPC 

applications up to 3000 MPI ranks on IBM Cloud and AWS. 

Performance measurements and analysis. Gupta et 
al. [25] evaluated the performance and cost of selected HPC 

applications across multiple HPC and Cloud platforms. They 

focus on identifying suitable HPC workloads running on 

the cloud and proposed optimizations to Cloud virtualization 

mechanisms to match the characteristics of HPC workloads. 

Sukhija et al. [26] discussed the requirements of a monitoring 
tool in HPC environments and proposed the integration of 

a tool called OMNI (from NERSC) with current state-of-art 

tools that are used in cloud computing settings, such as 

Prometheus and Grafana. 

VII. CoNCLUSION 

In this paper, we proposed a methodology for elastic 

scaling of tightly-coupled HPC workloads on the cloud. Our 

evaluation shows that the obtained speedup heavily relies 
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on the quantity of resources to be inh·oduced on the system 

and also at which point the scaling will be done, as there is 

a h·adeoff between checkpointing overhead and the benefits 

of additional resources. 

We show that the underlying mechanism for coordination 

between MPI processes on containerized environments is 

complex and deals with different technologies and software 

to turn the idea into reality - gRPC for coordination, Kuber

netes for resource management, SSH and .MPI for mnning 

tasks tlu-ough the network, Volcano as a monitoring aid for 
the tasks, plus the application-level knowledge for ensuring 

that the checkpointing works. Furthermore, our work can be 

advanced in two future fronts of work. 

The first front is monitoring (Section II-E). The current 

work does not leverage resource awareness but rather builds 

a fixed time model for simplicity (i.e., at 30%, 50% and 70% of a 

base execution time). For the elastic scaling to be effective in 

a production-level system, two factors should be considered: 

i) how many resources wiU be available on the system to 
an application, and ii) how much can the application benefit 

from additional resources. This is widely studied in cloud 

environments, especially when dealing with quality of service 
for users. 

The second front is to analyse more complex patterns of 

scaling. This work only scaled up once although Kub can do 

it multiple times through the same algorithm. However, de

signing experiments and analyzing results for such patterns 

is difficult as there is a large space to explore. Finally, as one 

can scale up for performance, we think that scaling down 

can also play a big role in resource management and energy 

consumption in the future. 
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