
Survey of adaptive containerization architectures for HPC
Nina Mujkanovic∗

nina.mujkanovic@hpe.com
HPE HPC/AI EMEA Research Lab

Basel, BS, Switzerland

Juan J. Durillo
Nicolay J. Hammer

durillo@lrz.de
hammer@lrz.de

Leibniz Supercomputing Centre
Munich, Bavaria, Germany

Tiziano Müller∗
tiziano.mueller@hpe.com

HPE HPC/AI EMEA Research Lab
Basel, BS, Switzerland

ABSTRACT
Containers offer an array of advantages that benefit research re-
producibility and portability. As container tools mature, container
security improves, and high-performance computing (HPC) and
cloud system tools converge, supercomputing centers are increas-
ingly integrating containers into their workflows. Despite this, most
research into containers remains focused on cloud environments.

We consider an adaptive containerization architecture approach,
in which each component chosen represents the tool best adapted
to the given system and site requirements, with a focus on accel-
erating the deployment of applications and workflows on HPC
systems using containers. To this end, we discuss the HPC spe-
cific requirements regarding container tools, and analyze the entire
containerization stack, including container engines and registries,
in-depth. Finally, we consider various orchestrator and HPC work-
load manager integration scenarios, including Workload Manager
(WLM) in Kubernetes, Kubernetes in WLM, and bridged scenarios.
We present a proof-of-concept approach to a Kubernetes Agent in
a WLM allocation.

CCS CONCEPTS
• Computer systems organization→ Cloud computing; • Soft-
ware and its engineering→ Operating systems; • Security and
privacy→ Operating systems security.

KEYWORDS
Containers,HPC,High performance computing,Kubernetes,Survey

ACM Reference Format:
Nina Mujkanovic, Juan J. Durillo, Nicolay J. Hammer, and Tiziano Müller.
2023. Survey of adaptive containerization architectures for HPC. InWork-
shops of The International Conference on High Performance Computing, Net-
work, Storage, and Analysis (SC-W 2023), November 12–17, 2023, Denver, CO,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3624062.
3624588

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0785-8/23/11. . . $15.00
https://doi.org/10.1145/3624062.3624588

1 INTRODUCTION
The building blocks for containers were laid during the develop-
ment of Unix V7 in 1979, when chroot - the possibility to change
the root directory of a process and its children - was introduced.
The design of cgroups or “Control Groups” in 2006 added the pos-
sibility for limiting, accounting, and isolating resource usage of a
collection of processes. In 2008, using chroot, cgroups, and Linux
namespaces, LXC (LinuX Containers) were implemented as the
first, most complete version of what we today consider a standard
container manager. It wasn’t until the development of a container
engine - Docker, in 2013 - and cloud computing systems that con-
tainers truly exploded in popularity.

Since then, as container tools matured, container security im-
proved, and HPC and cloud system tools converged, supercom-
puting centers have integrated containers into their workflows
[4, 47, 48]. Containers offer an array of advantages, such as greater
efficiency than full hardware-level virtualization, support for De-
vOps, management of on-demand resources, scalability across re-
sources, and improved portability of workflows. All of this in turn
enhances the reproducibility of scientific research, as well as the
cooperation between researchers.

Research on containers focused thus far mostly on cloud so-
lutions [50], orchestration in cloud environments [2], and bench-
marking containers running in cloud systems versus bare metal
[23]. With the emergence of more heterogeneous systems, and con-
vergence between HPC, cloud, and edge, more research has been
performed on the use and integration of container technologies
and orchestrators in HPC environments [15, 49].

In this paper, we perform an in-depth analysis of container tech-
nologies with a focus onHPC, integration into anHPC environment,
performance, and ease-of-use. Further, we describe integration sce-
narios taking the limitations of HPC sites into account. Finally, we
consider an orchestrator integration scenario, specifically that of
merging Kubernetes into an HPC workload management environ-
ment, with a proof-of-concept of a possible Kubernetes-in-Slurm
[26] integration.

We suggest an approach to portable but performant containers
in HPC that we term adaptive containerization, and which aims
to fulfill user, system, and site specific needs by choosing the best
adapted tools for each component of the containerization archi-
tecture and merging them into an integrated workflow. Adaptive
containerization focuses on accelerating the deployment of appli-
cations and workflows using containers while distributing some of
the maintenance burden and providing additional possibilities to

165

https://doi.org/10.1145/3624062.3624588
https://doi.org/10.1145/3624062.3624588
https://doi.org/10.1145/3624062.3624588
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624062.3624588&domain=pdf&date_stamp=2023-11-12

SC-W 2023, November 12–17, 2023, Denver, CO, USA Nina Mujkanovic, Juan J. Durillo, Nicolay J. Hammer, and Tiziano Müller

the research scientist. Essentially, it includes the integration of HPC-
centric and specific container engines, registries, and orchestration
tools, to deliver full workflow capabilities to an end user.

To our knowledge, while there have been papers with the goal
of creating taxonomies over all container applications available for
the cloud or HPC/cloud environment [6, 34], empirical analyses of
select aspects of container technologies [1], and surveys delving
into the similarities and differences between containers deployed
on cloud and HPC environments [50], this is the first analysis of
the entire containerization, registry, and orchestration stack with a
purely HPC-centric focus.

The paper is organized as follows: section 2 discusses the motiva-
tion to this work, in section 3 we introduce relevant terminology, as
well as HPC specific requirements to containerization. An in-depth
analysis of container engines and container registries for HPC is
performed in sections 4 and 5, respectively. In section 6 we discuss
Kubernetes integration scenarios. Finally, we conclude this paper
and give an outlook on future challenges in section 7.

2 MOTIVATION
Building software in a reproducible fashion requires absolute con-
trol over either the build environment or the build systems involved.
The responsibility to correctly specify and verify dependencies,
such as which library to link against, is placed on the user. Ensur-
ing for example consistent use of threaded vs non-threaded libraries
becomes crucial for the code to execute correctly. Failure to ensure
this consistency can lead to runtime errors that are difficult to track,
or may even return adulterated results, despite integration testing.

Correctly applied, containers provide a stable and controlled
environment for wrapping software or even entire scientific soft-
ware stacks into a portable unit. Packaging these portable units
in a standardized way makes it possible to write workflows with
dependencies on specific containers, rather than specific execution
environments. This is in particular exploited by the bioinformat-
ics [46] and data science [33] communities, which use multiple
tools with sometimes competing build and runtime environment
requirements in complex data processing pipelines.

Thus, within an HPC environment, containers aid in solving the
problems of package build systems by:
• enforcing a code-based approach to the build environment and
the software packaged by it via the use of container specs such
as Dockerfiles or Singularity definitions,

• controlling the build environment such that there is only one
library variant available and the software can either build against
it or fail at the linker step,

• allowing more lenient package build systems, as often found in
scientific software,

• and bundling multiple packages into one consistent directory
tree, made relocatable with the help of the container engine.
As applications are not necessarily linked statically and may

need additional support files such as parameter sets, configurations,
model data, etc., most applications must be run within the container
they were built in or, ideally, within a pared-down version of it.
These applications are fully decoupled from the system libraries on
the host operating system, increasing portability. The clear advan-
tage is that the host operating system can be updated independently,

reducing the system administration burden. The drawbacks include
the containers not profiting from security, bugfix, or performance
updates performed on the host operating system. This mandates
the use of Continuous Integration/Continuous Delivery (CI/CD)
systems for container update automation, and a service or registry
for management and sharing. An efficient formulation of regression
tests can for example be done with a software package like ReFrame
[8].

An in-depth analysis of the possible container engines, registries,
and orchestration tools aids in the selection of the most fitting tools
to integrate into a full HPC adaptive containerization architecture
based on site requirements.

3 CONCEPTS
The containerization stack consists of multiple components on
multiple levels which must be defined. To facilitate the discussion
of adaptive containerization, we must further define the set of
requirements posed by HPC sites to ensure security and efficiency
for all its users.

3.1 Terminology
At the lowest level is the image, an immutable file composed of
source code, libraries, and dependencies necessary for an applica-
tion to run. A container image is not a container and cannot be
executed. To run an image, it must be unpacked into a container -
a runtime instantiation usually isolated using Linux cgroups.

Container images can be stored in a registry that is used to man-
age, push, and pull images. Registries store container repositories,
collections of related images that may have the same name and are
differentiated by their tags or alphanumeric identifiers.

The data inside a container image is usually organized in layers.
A layer captures changes in the filesystem compared to the previous
layer, and is identified by a hash calculated from the data in that
layer. Layer deduplication can be employed in registries and locally
based on equal hashes (content-addressable storage).

At the highest level, we differentiate between the container en-
gines and the container runtime interface (CRI). Container engines
include Docker, Podman, Sarus, and many others. They permit the
user to make requests regarding container images via a user-facing
component. These requests may include image pulls from a registry,
signature verification, unpacking of bundles, and ascertaining the
availability of required system components. The engine is not a CRI,
but is responsible for calling the container runtime. The container
runtime is a lower-level component that handles image and process
management. The runtime sets up the user namespace (UserNS),
thus starting the container process. The most popular container
runtimes include runc [20] and crun [9].

The interoperability between the various engines and runtimes
is standardized under the Open Container Initiative (OCI). The OCI
defines a standard container image format, the container runtime
specification, and a reference runtime implementation runc, which
was split off from Docker. OCI-compatible runtimes have OCI Run-
time Specification compliant CLI options, a configuration interface,
and execute OCI hooks, a mechanism that defines entry points to
inject code to be run at various phases of the container lifetime.

166

Survey of adaptive containerization architectures for HPC SC-W 2023, November 12–17, 2023, Denver, CO, USA

For building container images, as well as use cases which require
more isolation based on virtualization technology, an extra set of
tools and terminology is needed. Building container images comes
with its own set of challenges, including restrictive site policies dis-
allowing users from building their own; internet access restrictions
complicating software builds; the need to choose between hardware
optimized versus portable containers; the requirement for software
to match between the container and on the host, especially with
regard to MPI and accelerators; long build times and large container
storage; and the issues regarding host file access from the container.
Since we consider these topics beyond the scope of this paper, we
hereby refer to the respective literature [5, 13, 35].

3.2 HPC Requirements
Container technologies were initially created to run services, hence
the assumption that containers are started by users with root or
root-like permissions. Privilege escalation on HPC systems poses
a security issue, making alternative container execution models
such as rootless a requirement. Rootless refers to the ability to
start containers as an unprivileged user and avoid running binaries
with root permissions in the default or initial namespace in which
every process started on a Linux system runs. This execution model
provides users the capability for privilege escalation only within
the container, and allows access to syscalls affecting the runtime
environment, while denying access to resources on the host system
to which the user does not have permissions.

While the strict adherence to rootless container execution poses
one of the main challenges of deploying container technologies
on HPC systems, additional requirements differing from those of
non-HPC systems exist.

The advantages of container technologies are achieved by re-
stricting the container process to a subset of resources and thus
introducing an interface between the host operating system and the
container execution environment. This interface executes a change
of the filesystem root via chroot or pivot_root; separates filesystem
mounts, system IDs (uid, gid), process IDs, networks; etc. These
restrictions in turn enable the runtime portability of containers.

Container or process isolation enables the running of multiple
containers concurrently on the same hardware. Workloads on HPC
systems are often spread across multiple nodes. As compute nodes
are allocated exclusively, strict container isolation may introduce
performance penalties due to increased OS overhead. Note that this
penalty is in flux as the use of exclusive node allocation has been
shifting for high-density systems with more than two GPUs per
node, with enough cores per node, or for workflows that require
direct communication between applications in different containers
by means of e.g. shared memory.

Beyond the introduced overhead, strict container isolation may
break access to HPC hardware such as interconnects or accelera-
tors. Additionally, it may break software with custom inter-node
communication such as e.g. workflow-based payloads that require
non-MPI communication.

Filesystem access poses another set of issues. Container pro-
cesses may require access to specific files on the host system, in-
cluding device libraries, configuration files, license restricted files,
etc. When loading host libraries for device drivers, communication,

etc., ABI compatibility with the container applications and libraries
must be ensured. Failure to do so may lead to errors which are
hard to detect and may possibly affect scientific results. This may
extend beyond the requirements of the directly involved libraries: if
a host library imported into the container requires a newer version
of glibc than present within the container, it will fail. Overriding
most of the container libraries with the host supplied ones may
equally introduce compatibility issues.

Interoperability with data on existing shared filesystems is im-
portant, whereas large scale container deployments in the cloud
often avoid shared data or POSIX filesystems altogether. A con-
tainer image contains many small files, which may be loaded from
shared storage from many compute nodes, and may put strain on
the cluster filesystem, slowing down startup time or even execution.
This can also affect other users of the shared storage.

Software within containers must be optimized for a target archi-
tecture, thus breaking the premise of container portability. While
tracking dependencies for security issues across the layers of a
container is crucial for cloud service containers, it is less impor-
tant for HPC containers as the applications usually do not offer a
continually run service which can be exploited from arbitrary loca-
tions, thus adding a level of isolation. Nonetheless, there are attack
scenarios which may require scanning images as due diligence.

Finally, on HPC systems malicious users must be assumed, and
privilege escalation avoided. Possible attack vectors if a user is
granted elevated privileges include the injection of malicious data in
filesystem images to exploit kernel block device driver security bugs.
Initial containerization solutions, such as Docker, used persistent
background processes to manage images, containers, networks, or
storage volumes. Spinning up such daemons on each compute node
to control what is most often a single container process is wasteful
and may introduce extra jitter, and increases the attack surface in
the process.

The various HPC container technologies implemented to date
share similar solutions to the above stated requirements:

• HPC container solutions do not require running daemons to
start containers, and especially root or root-like daemons must
be avoided. Tasks such as registry interactions may use daemons.
A monitoring process to give enhanced control over the running
process may still be involved, but must run as the same user
starting the process.

• Container isolation is weakened, resulting in a setup which
offers more isolation than a simple chroot, but less than full
container isolation. A user namespace is created to obtain extra
capabilities within the container, which are in turn used to set up
separate mounts invisible to everyone beyond the real root of the
host system. This enables overlaying parts of the host OS into
the container environment, allowing the container processes to
access host OS libraries or devices.

• Unused isolations such as network or IPC namespaces are not
set up to reduce complexity and attack surface, or because they
may interfere with HPC applications. HPC workload managers
such as Slurm or the PBS family may enable job sharing on a
single node via cgroups support, but are often configured for
exclusive node allocation, depending on site policies.

167

SC-W 2023, November 12–17, 2023, Denver, CO, USA Nina Mujkanovic, Juan J. Durillo, Nicolay J. Hammer, and Tiziano Müller

• Host configurations are copied into the container environment,
modifying it in the process. User namespacing is limited to a
single user to ensure files created by processes in the container
have the UID/GID of the user launching the job.

• Container filesystems are (re-)packaged as single-file images to
avoid small-file load and latency, potentially providing a speedup
against traditional application execution by trading memory and
CPU (decompression) for disk IO.

• When a kernel driver for compressed filesystem image reading
is used, care is taken that the user can never directly provide
such a compressed image. Caching of such filesystem images
may thus require a separate service or to be run as root, or a
userspace filesystem driver must be used to avoid exposing the
kernel to user generated filesystem images.
The containerization technology space is a quickly developing

one. Many tools exist that enable the building and running of con-
tainers. The following analysis makes no claims to completeness,
as new technologies are developed constantly. Nevertheless, great
care has been taken to analyze the requirements and the solutions
given by containerization technologies with a focus on HPC.

4 CONTAINER ENGINE COMPARISON
This section contains a set of tables giving an overview of features
we identified as important for HPC Containers. The chosen criteria
are used to evaluate the most prominent (HPC) container solutions
which may be deployed without extra management services such as
Kubernetes, Docker Swarm, Apache Mesos, OpenShift, Rancher, or
Nomad. Additionally, we include Docker as a baseline comparison
and for the sake of completeness. Tables 1, 2 and 3 contain the
summarized comparison for the following discussion.

4.1 Discussion
In the following, some of the chosen evaluation criteria are de-
fined, examined, and discussed. We refer to projects in shorthand
where significant interrelations exist. Singularity, for example, di-
verged into two correlated projects in 2021, when Sylabs forked
the Singularity project to create its community version Singulari-
tyCE, covered under the BSD License, and the original Singularity
project in turn chose to rebrand itself to Apptainer and move into
the Linux Foundation. While initially alignment is expected be-
tween Apptainer and SingularityCE, divergence has and will occur.
Consequently, where no distinction is required between Apptainer,
SingularityCE, and Sylabs’ proprietary SingularityPro, we refer
to them collectively as Singularity. Finally, note that, as Podman-
HPC is a wrapper script around the Podman engine that provides
additional HPC configuration on top of it, the two are not fully
independent.

4.1.1 Champion and Affiliation. In the past, project affiliation was
less significant to HPC sites, as they were more isolated, and com-
patibility with bleeding edge technology played a different role.
While all listed projects are Open Source Software (OSS), the en-
tities behind them can retain significant influence. This influence
may range from limiting features to paying customers, affecting
the development trajectory, up to complete project defunding.

An example of this dynamic is the interaction between App-
tainer and SingularityCE. The company behind the Singularity

platform, which diverged into Apptainer and SingularityCE, has
released SingularityPro with additional features (e.g. Software Bill
of Materials (SBOM)) and support contracts, as well as their own
maintained registry platform. While it can be advantageous to ex-
ternalize some of the costs of maintaining base images, it can also
be seen as an attempt at the platformization of the HPC container
space. Additionally, despite Apptainer incorporating changes made
in SingularityCE, a quick comparison shows differences between
them, with e.g. Apptainer using runc and SingularityCE using crun
as their default runtimes. As Sylabs develops its business, it is safe
to assume that more of the advanced features will be incorporated
into SingularityPro and may not be open sourced.

4.1.2 Rootless container and FS implementation. The core principal
behind rootlessness is the use of pivot_root instead of the clas-
sical chroot to provide a new root to the processes started in the
container. A user gains the capability to pivot_root when in their
own UserNS. Despite the user being able to assume UID 0 inside of
this new namespace, it does not permit mounting block devices or
files acting as such via kernel drivers, since kernel drivers are not
hardened against maliciously crafted block-device data. Therefore,
a SquashFS image can only be mounted by either a setuid-root
binary prior to entering the namespace, via a FUSE driver as the
FUSE user-kernel interface can be assumed to be audited, or not
at all, instead unpacking an image to a directory. When using the
setuid-root approach, care must be taken to not only secure the
binary and the image itself (e.g. on transparent conversion from
an OCI image layer to a SquashFS image at runtime; the resulting
image must not be user-writeable), but also to ensure that the user
is unable to manipulate it while being mounted, nor inject their
own image directly.

One approach that works around the limitations imposed by a
shared cluster filesystem is extracting an image to a temporary,
node-local storage location. This avoids the need for either user-
or kernel-space filesystem drivers, thus reducing the memory and
CPU overhead generated by the intermediate image.

An alternative to the namespace-based rootless mechanisms
are the fakeroot approaches: an LD_PRELOAD variant, in which
a library intercepting relevant system calls is loaded prior to any
executable; or a variant based on the ptrace system call, allowing
to intercept the system calls of another process. A limitation of the
first approach is that it fails with static binaries, and of the second,
that it introduces a significant performance penalty and the user
requires access to the CAP_SYS_PTRACE capability.

We note that benchmarks comparing SquashFUSE and the in-
kernel SquashFS show a magnitude lower IOPS for random access
and a much higher latency[43]. For many compiled codes this will
only be noticeable on start and when loading bundled parameter
data, while for projects based on interpreted languages like Python,
which consist of many small files, it will have a more noticeable
effect. A similar situation can arise with a FUSE-based OverlayFS
implementation, where heavy I/O must be absorbed by the CPU.

4.1.3 OCI Container and Hook support. Support for hooks becomes
important if extensions such as for additional image modification
or accelerator enablement are required. The OCI hooks specifica-
tion, which is part of the OCI runtime spec, provides a vendor-
independent way of installing and running such hooks at defined

168

Survey of adaptive containerization architectures for HPC SC-W 2023, November 12–17, 2023, Denver, CO, USA

Engine Version Champion Affiliation Runtime Implem. Language

Docker v24.0.5 (Jul. 24, 2023) Docker Docker runc/crun Go
Podman [17] v4.6.1 (Aug. 10, 2023) RedHat/IBM Kubernetes crun/runc/Crio-O Go
Podman-HPC [31] v1.0.2 (Jun. 15, 2023) NERSC - crun/runc/Crio-O Python, C
Shifter [21] Git 0784ae5 (Oct. 22, 2022) NERSC - Shifter C
Sarus [3] v1.6.0 (May 5, 2023) CSCS - runc/crun C++
Charliecloud [36] v0.33 (Jun. 9, 2023) LANL - Charliecloud C
Apptainer [38] v1.2.2 (Jul. 27, 2023) LLNL, CIQ Linux Foundation runc/crun Go
SingularityCE [19] v3.11.4 (Jun. 22, 2023) Sylabs - crun/runc Go
ENROOT [11] v3.4.1 (Feb. 8, 2023) Nvidia Nvidia enroot C, Bash

Engine Rootless Rootless-FS Container Monitor OCI Support
Hooks Container

Docker UserNS fuse-overlayfs per-machine (dockerd) yes yes
Podman UserNS fuse-overlayfs per-container (conmon) yes yes
Podman-HPC UserNS SquashFUSE + fuse-overlayfs per-container (conmon) yes yes
Shifter UserNS suid no no yes (partial)
Sarus UserNS suid no yes yes (partial)
Charliecloud UserNS Dir, SquashFUSE no no yes (partial)
Apptainer UserNS, fakeroot[13] suid, fakeroot, (SquashFUSE) per-container (conmon) yes (manually, requires root) yes (partial)
SingularityCE UserNS, fakeroot suid, fakeroot, SquashFUSE per-container (conmon) yes (manually, requires root) yes (partial)
ENROOT UserNS Dir no no yes (partial)

Table 1: Overview of container engines with supported rootless-techniques and OCI compatibility.

Engine
Transparent
Format
Conversion

(Transparent)
Native Container
Format Caching

Native
Format
Sharing

Namespacing on Execution Signature Verification
Support

Encrypted Container
Support

Docker - - - full Notary no, extensions available
Podman - - - full GPG, sigstore yes
Podman-HPC yes yes no full/user and mount NS GPG, sigstore yes
Shifter yes yes no user and mount NS - no
Sarus yes yes yes user and mount NS - no
Charliecloud no - no user and mount NS - no
Apptainer yes yes yes user and mount NS, possibly others GPG (SIF containers) yes (SIF only, via kernel driver)
SingularityCE yes yes yes user and mount NS, possibly others GPG (SIF containers) yes (SIF only, via kernel driver)
ENROOT no - no user and mount NS - no

Table 2: Continuation of table 1 with focus on supported image formats and features.

points in the lifetime of a container without the need to modify the
runtime itself. Most solutions either provide direct support for OCI
hooks (in particular when relying on a mainstream runtime like
runc or crun), or a custom hook framework (see plugins in App-
tainer). Some container solutions, such as e.g. Shifter, rely on parts
of their software being written in a scripting language, therefore
making them easily extendable and more flexible, but requiring
adaptions of the extensions when the base software is updated.

For OCI compatibility, it is important to note that HPC container
solutions may break some of the features a container might expect
to be present. Themost obvious of thesemissing features include the
lack of an isolated network namespace which permits the binding
of services to arbitrary ports, or the availability of different user IDs,
as often only a single one mapped directly to the original user ID is
made available. Vanilla containers may thus have to be repackaged
or modified before running on an HPC container system.

4.1.4 Container Format, Conversion, Caching and Registry. The
Singularity Definition file .def is similar to the RPM spec file,
and all commands to build the container can be placed in a single
section, as layering is not available in the flat Singularity Image
Format (SIF). The SIF integrates writable overlay data, which may
be useful for bundling either models or output data with the code

using or generating it. In Dockerfiles, on the other hand, manually
grouping commands into layers constitutes an important concept
to allow incremental container builds, updates, and deployments. It
has to be noted that when integrating Podman and Singularity, as
Podman is capable of running SIF containers, Singularity may be
solely needed to build the container, leaving Podman to launch it.

In non-HPC containers, the OCI filesystem bundle consists of
multiple layers, with each layer tracking a change to previous
filesystem layers. These layers are mounted via a union mount
filesystem approach - usually the Linux based OverlayFS driver
- into a consistent filesystem view with only a new upper layer
being writable. Running an OCI container in an HPC setting thus
requires all layers to be present on a shared storage. This overlay
mount capability may not be enabled on the compute nodes, or
may require root privileges depending on the kernel version.

HPC cluster filesystems, or any shared filesystems, are known
for not scaling well in cases of random access with many small
files, as can be seen with e.g. Python or other interpreters. Even for
more static workloads, there may be additional load to the shared
filesystem on startup. This load is caused by the containers’ base
libraries, which have to be loaded into memory, and which may load
additional service files that would otherwise already be in memory

169

SC-W 2023, November 12–17, 2023, Denver, CO, USA Nina Mujkanovic, Juan J. Durillo, Nicolay J. Hammer, and Tiziano Müller

due to the host operating system requiring them. For example, libc
will have to load /etc/nsswitch.conf to determine the source of
UIDs/GIDs, and from there the respective configuration files; or
system libraries may have to load localization specifications, etc. As
established earlier, one solution to work around these limitations is
to flatten the OCI bundle either to a node-local directory, or to a
filesystem image on a shared storage. This conversion can happen
either automatically or explicitly. In the automatic case, we want
this converted image to be cached to avoid repeated conversion
costs (storage and time), and possibly share it between different
users.

If an in-kernel driver is used to mount a filesystem image, care
must be taken that the user can neither provide nor manipulate
the image directly, instead using a userspace driver (SquashFUSE)
to mount it, as pointed out in sections 3.2 and 4.1.2. When an in-
kernel driver is used, there must be a setuid-root binary doing the
conversion, caching, and sharing between multiple users, as in e.g.
Sarus. It must be noted that an OverlayFS mount does not suffer
from the same risks as a SquashFS mount, since the OverlayFS
does not access raw block device data, but acts on the mounted
filesystem instead. Both Docker and Podman switched to a FUSE-
based OverlayFS fuse-overlayfs driver.

Since sharing container images - irrespective of format - via
filesystem has several challenges (e.g. managing access via POSIX
ACLs or extended ACLs, deduplication, locking), a better approach
may be a separate service which can ensure the required access
semantics. Sarus and Singularity support sharing their respective
native HPC container formats, while other solutions do not and
sharing always happens prior to conversion to the format, or by
manual setup directly between users.

4.1.5 Container Signing and Encryption. While digital signing does
not prevent the spread of malware, or protect from well-funded
malicious actors, it can help uncover basic attacks in the form of
name squatting, breaches of security, and make tracing software
provenance possible. Docker and Podman, the industry solutions
at the forefront of digital signing, implement different solutions:
Docker uses the Notary (v2) tool, while Podman provides similar
functionality via GPG signature attachments. Apptainer has built
its signing solution on PGP as well, although only for its own SIF
container, meaning that signatures for imported OCI containers
are not verified. sigstore [41], with cosign [40] being the imple-
mentation for containers, is an independent approach which can
be used for general software signing support, and for supporting
SBOM or lists of all the open-source and third-party components
present. Podman added direct support for cosign, but it currently
requires extra setup steps.

Running code on or transferring data to external machines al-
ways requires a certain amount of trust. Container encryption can
limit data access times and access privileges. When combined with
secure enclaves, it can make it difficult to access data despite having
total control over the hardware the data is stored on. This permits
the deployment of workloads which previously had to be run on
isolated systems on a supercomputer. Since this feature is still under
development for most solutions, we tracked only the simplest form
of support: does the runtime, resp. engine, support decryption of
encrypted containers.

4.1.6 HPC-specific extensions - GPU and Accelerator Enablement,
Library Hookup, WLM Integration. As mentioned in section 3.2,
HPC container technologies require additional steps at container
startup. This includes granting containers access to host libraries
like optimized scientific libraries, device libraries for accelerators,
communication, etc. Host library access can be enabled by bind-
mounting host directories into the container namespace, providing
extra device nodes, or granting extra capabilities to the user process.
Most HPC container implementations have solutions built-in for
the GPUs of the most common vendors. Other accelerators must be
added via hooks or plugins. When a container gains access to host
libraries, it requires a matching ABI, as a mismatch may introduce
subtle errors. Some solutions like Sarus therefore contain explicit
ABI compatibility checks on the libraries.

While it is possible for all container solutions to be invoked ex-
plicitly via batch scripts, proper WLM integration may be required.
TheWLM controls device access rights, which must be passed along
to the container engine, and may restrict the capabilities available
to the user (like cgroups). A more transparent container execution
may be desirable in order to lower the container entrance barrier
for users, and to avoid common mistakes when running containers.

As containers introduce an additional layer of indirection, some
workflows using interactive access may be broken or require ad-
ditional steps. This problem could be alleviated via proper WLM
integration. Other use cases involving profilers and debuggers may
require approaches specifically tailored to container usage in HPC.

4.1.7 Module System Integration. While it is possible to write a
wrapper script to transparently start a container in which to run an
application, doing so may have unexpected side-effects for the user
and require additional work. With the exception of the Singularity
Registry for HPC (shpc [42]), none of the other projects offer affil-
iated solutions to automatically integrate containers as modules.
Despite shpc originating in the Singularity ecosystem, it officially
supports other container solutions like Podman [17], although they
may require additional configuration in the form of wrapper scripts.

4.1.8 Documentation. Grading of the software documentation for
each engine is based on three elements - the availability and length
of the documentation, the breadth and depth of the topics covered,
as well as the clarity of the text. While the grading must by def-
inition be subjective, we hope to somewhat standardize it with
the given criteria. Where no documentation (e.g. Podman-HPC) or
insufficient documentation was available, the corresponding slot
has been marked with N/A. In all other cases, a scale ranging from
+ for minimal documentation available to +++ for extensive and
well-organized documentation was used.

4.1.9 State of Source Code, Contributors, Community. The num-
ber of contributors and/or size of the community may serve as an
indicator of the future development of a project. A small contrib-
utor base originating mostly from a single entity may change the
direction of a project drastically, whereas defunding of the project
within that entity can bring it to a sudden stop. We see this risk in
particular for the Shifter, Sarus, Charliecloud, and Enroot projects,
but also to a lesser degree for the Podman-HPC project, which is
at the moment at an incubator stage. For the latter it is possible

170

Survey of adaptive containerization architectures for HPC SC-W 2023, November 12–17, 2023, Denver, CO, USA

Engine GPU-Enablement Accelerator Support OS/MPI Library Hookup WLM Integration Contains Build Tool

Docker via OCI hooks via OCI hooks via OCI hooks no yes
Podman via OCI hooks via OCI hooks via OCI hooks no yes
Podman-HPC yes via OCI hooks or patch yes no yes
Shifter no no for MPICH yes / SPANK plugin no
Sarus yes via OCI hooks yes partially via OCI hooks no
Charliecloud manually manually manually no (no SPANK plugin release) no
Apptainer yes no manually no yes
SingularityCE yes no manually no yes
ENROOT yes, Nvidia only via custom hooks via custom hooks yes / SPANK plugin no

Engine Module System Integration Documentation #Contributors
User Admin Source

Docker via shpc +++ + + 486
Podman via shpc + N/A ++ 461
Podman-HPC (via shpc) N/A N/A (+) 3
Shifter no (shpc announced) + + ++ 17
Sarus no (shpc announced) ++ ++ + 6
Charliecloud no +++ + ++ 31
Apptainer via shpc ++ + + 148
SingularityCE via shpc ++ N/A + 130
ENROOT no N/A N/A + 9

Table 3: Summary of supported integrations for different container solutions and community analysis.

that required features will be directly ported to Podman. For opera-
tions, this could mean that system administrators have to take over
maintenance at a lower level than initially anticipated. This must
be accounted for in the risk assessment.

For an example of this dynamic, we may look at Shifter and
Podman-HPC, both developed at NERSC. Based on presentations
by NERSC [14], it is possible to assume that Shifter will be replaced
by a solution based on Podman, with the Podman-HPC development
serving as a testing ground for various capabilities such as inter-
cepting layer unpacking to generate a filesystem image, using OCI
hooks to setup devices and device libraries, and integrating with
the WLM.

It must be stressed that the number of contributors does not
paint the whole picture. In particular, while SingularityCE has
fewer contributors than Apptainer, the activity in the SingularityCE
repository as measured by the number of added and deleted lines
for the month of November 2022 was double that of the activity of
the Apptainer repository.

4.2 Summary
With regard to HPC requirements, the container technology selec-
tion space is essentially tripartite: cloud industry container tools
like Docker and Podman, Singularity with their own image format,
and projects trying to integrate containers without deviating too
much from the cloud industry standards. Industry tools have the
advantage of an immense user community with a lot of resources,
while HPC-centric tools may be more accommodating to the do-
main scientists, such as by offering the simpler structure of the
Singularity container specification files.

It is difficult to make specific assessments regarding the future-
proofness of any single solution. The HPC space has been trending
towards using Singularity in previous years. Big cloud providers
are pushing into the HPC segment and have started to support SIF
containers in their registries to ease the onboarding of scientific
compute customers on their platforms. Newer tools like Podman

support running containers from SIF, easing the shift from Sin-
gularity in case of adoption of Podman for existing deployments.
While this Podman support does not indicate that SIF will become a
standard used outside of scientific computing, it shows that there is
a demand for it, and that there are implementations beyond Singu-
larity capable of executing it. HPC initiatives like Autamus provide
both kinds of image formats, anticipating the needs of Singular-
ity alternatives relying solely on OCI containers. Together with
NERSC gravitating towards Podman with the help of a small wrap-
per and support from RedHat, Sylabs improving the support for
OCI containers for SingularityCE 4, and Apptainer gaining support
for building from Dockerfiles, the longterm prospects of SIF become
less certain.

5 CONTAINER REGISTRY AND CI/CD
COMPARISON

An internally deployed Container Registry may be required to main-
tain containers, and to act as an intermediary when moving public
or private containers to and from HPC systems, thus avoiding the
use of SSH transfers. In this section, we compare existing registry
solutions deployable either on-premise or as part of a CI/CD in-
tegration workflow. Note that, while some cloud platforms like
OpenShift provide built-in registries, evaluating such a cloud plat-
form is out-of-scope for this document, and these registries have
been omitted from the comparison. We refer to tables 4 and 5 re-
garding the included container registry projects and the criteria
discussed in the following section.

5.1 Discussion
5.1.1 Champion and Affiliation. While the landscape of container
solutions and build tools is diversified, the same can not be said for
registry services. Since registries can be provided as-a-Service, most
registries have a company sponsored development. This increases
the risk of the product taking new or unexpected directions, or of
having the development model or license switched. The project

171

SC-W 2023, November 12–17, 2023, Denver, CO, USA Nina Mujkanovic, Juan J. Durillo, Nicolay J. Hammer, and Tiziano Müller

Registry Version Champion Affiliation Focus Protocol

Quay [39] v3.8.10 (Dec. 6 2022) RedHat/IBM - Registry OCI v2
Harbor [16] v2.8.3 (Jul. 28, 2023) VMWare CNCF Registry OCI v2
GitLab v16.2 (Jul. 22, 2023) GitLab - Git hosting, CI/CD OCI v2
Gitea v1.20.2 (Jul. 29, 2023) (OSS community) - Git hosting, CI/CD OCI v2
shpc [42] v2.1.0 (Apr. 6, 2023) vsoch LLNL Registry Library API
Hinkskalle [32] v4.6.0 (Oct. 18, 2022) h3kker University of Vienna Registry Library API, OCI v2
zot [51] v1.4.3 (Nov. 30, 2022) Cisco CNCF Registry OCI v1

Registry OCI Artifact Support Proxying Repl./Mirroring Storage Support Authentication Providers

Quay Helm charts, cosign, zstd yes / auto yes (pull) FS, S3, GCS, Swift, Ceph internal, LDAP, Keystone, OIDC,
Google, GitHub

Harbor Helm charts, cosign, user-def. yes / auto yes (push + pull) FS, Azure, GCS, S3, Swift, OSS internal, LDAP, UAA, OIDC
GitLab no, separate pkg registries yes / manual no FS, Azure, GCS, S3, Swift, OSS LDAP
Gitea Helm, separate pkg registries no no FS, Minio/S3 internal, LDAP, PAM, Kerberos
shpc - no manual (Globus) Minio, GCS, S3 LDAP, PAM, SAML
Hinkskalle no no no FS LDAP
zot Helm charts, cosign, notation no yes (pull) FS, S3 internal, LDAP

Table 4: List of common container registries with their respective featureset.

documentation often reflects this, as can be seen in the Project
Quay documentation for example, which often refers directly to
Red Hat services.

Despite both Apptainer and SingularityCE having the capabil-
ity to push and pull standardized OCI containers, a separate SIF
compatible registry adhering to the Library API standard may be
advisable for improved integration, especially as pertains to signing,
avoiding repackaging, preserving metadata, etc. Apart from the
as-a-Service registry provided by Sylabs, which is not part of this
comparison, the available Library API registries are maintained by
single developers, and are thus likely to receive less scrutiny than
the OCI registries.

5.1.2 Focus. Several CI/CD solutions offer package registries with
the intention to directly host the generated build artifacts. While
these solutions explicitly offer container registries, the included
feature sets are limited, and the registries may thus not be suitable
if requiring the ability to store, verify, and display signatures, or
to accept any other artifacts than containers. We note that a broad
support of the OCI standard is crucial for the development of the
Adaptive Containerization feature, as it could build on user-defined
OCI artifacts.

5.1.3 Proxying Capabilities andMirroring. Themost popular public
OCI registry, DockerHub, introduced rate limiting in November
2020, a change quickly affecting any site with a small number of
public IP addresses for a large number of clients. While layers
originating from public containers can be cached on an internal
registry, upstream registries may still be queried regularly when
containers are (re)built, or when public containers are used on a
system where at least a part of the nodes has unfettered internet
access. One possibility to work around this limitation is the use of
a proxy server to cache the requests.

Such proxy services can be provided by a registry implementing
proxy capabilities via the transparent forwarding and caching of re-
quests in a namespace to an upstream registry. The advantages over
a common HTTP(S) proxy include detailed statistics of upstream
registry usage, required disk space, image statistics, etc. Addition-
ally, the registry mirroring capabilities can be used to either mirror

hosted containers to a public registry, or to preserve remotely pro-
vided containers on the local infrastructure. Finally, deploying a
site-local registry with proxy capabilities, possibly attached to a
clusters’ highspeed network, can support public network access
scenarios without giving the login or compute nodes full internet
access.

5.2 Summary
With the Library API (Singularity) registries being carried by single
developers, and the CI/CD system integrated registries supporting
only a subset of the possibly required features such as proxying, mir-
roring, or user-defined OCI artifacts, the remaining candidates for
an HPC-centric container setup are Project Quay and Harbor. Har-
bor, a Cloud Native Computing Framework project, seems to cur-
rently enjoy broader support, despite being sponsored by VMWare.
A comparison of the number of contributors - around 260 for Harbor
versus 60 for Quay - lends credence to this assessment.

Wewould like to note that, since SIF images can be pushed to OCI
registries, there is no technical requirement to deploy a Library API
registry when choosing Singularity. This has been demonstrated
by the Singularity HPC Library, where SIF container images are
hosted on either DockerHub or the Github Container Registry.

6 KUBERNETES INTEGRATION SCENARIOS
In previous sections, we evaluated the integration of container
engines with WLMs such as Slurm. These WLMs schedule jobs and
execute batches of single execution jobs on an HPC cluster based
on predefined and flexible rules.

In a cloud system, a similar function may be performed by
a cloud orchestrator - an application that can configure, man-
age, and coordinate multiple containers. The best known of these
is Kubernetes [25], an open source platform first developed by
Google, but now maintained by the Cloud Native Computing Foun-
dation (CNCF). Various distributions of Kubernetes exist, includ-
ing K3s [22] (lightweight Kubernetes), a fully conformant, pared
down version packaged in a single binary and designed for use on
e.g. Edge, IoT, Embedded, etc. devices.

172

Survey of adaptive containerization architectures for HPC SC-W 2023, November 12–17, 2023, Denver, CO, USA

Registry Image
Squashing

Image
Formats Multi-Tenancy Quota Signing Deployment Build Integration

Quay on-demand OCI yes ("Organization") per-project yes Kubernetes Operator build on Kubernetes, EC2
Harbor no OCI yes ("Project") per-project yes Docker Compose, Helm Chart via CI/CD

GitLab no OCI yes ("Organization") minimal solution
self-hosted no Linux packages, Helm Chart,

Kubernetes Operator, Docker, GET via CI/CD
Gitea no OCI no no no Docker Compose, Binary, Helm Chart via CI/CD
shpc - SIF no no yes Docker Compose build on GCC
Hinkskalle - SIF, OCI no no yes Docker Compose no
zot no OCI no no yes Docker, Helm, Podman via CI/CD

Table 5: Continuation of table 4, listing supported image formats, deployment techniques, and build integration.

The interest in Kubernetes integration scenarios for HPC sys-
tems stems from the fact that domains such as bioinformatics and
the data sciences have made successful use of traditional cloud
resources like the Google Cloud Platform (GCP) for their research
pipelines. Subsequently, workflows and workflow systems have
been developed which rely on Kubernetes as an interface to de-
ploy and run the respective containers and processes. Supercom-
puting facilities, meanwhile, optimized the use of WLMs on their
systems in the past decades. They must thus be able to integrate
their WLMs with orchestrators when running such Kubernetes
workloads. This is particularly crucial in regards to the account-
ing of used resources, but also for optimized scheduling and the
integration of newer features like preemption.

As noted in 3.2, HPC container software may provide only a
subset of the isolation techniques cloud-native solutions employ,
and some containers may therefore require modification before
use. Integrating Kubernetes, which supports namespace isolation
and makes user mapping possible, could remedy this issue, as it
would make it possible to run containers, as well as workflows
spanning multiple containers that require these techniques, without
alterations.

While container orchestrators are more common in cloud en-
vironments, they can and have been used on HPC systems for
container deployment, at times in conjunction with classic HPC
workload managers. Here we review the possible integration sce-
narios as found in the literature [2, 27–29, 45], and finally propose
a new integration method.

6.1 On-Demand Reallocation of Compute Nodes
We consider an integration scenario where Kubernetes and the
WLM live adjacent to each other, and one or the other may be in con-
trol of node allocation. While Wickberg [45] discusses an explicit
slurm-k8s-bridge in which Slurm is prioritized and schedules
both Slurm and Kubernetes workloads, we are taking a more ab-
stract approach here.

We propose a setup that consists of a minimal, dedicated Ku-
bernetes cluster on separate hardware, or in a suitable virtualized
environment with access to the appropriate network segments. As
users request nodes to run workloads on Kubernetes, the WLM is
automatically instructed to take a corresponding number of nodes
offline, which are then reconfigured to run a Kubernetes agent or
Kubelet, and connect to the Kubernetes cluster. Kubernetes can
then deploy pods on these ephemeral nodes. Idling nodes must
be returned automatically to the WLM for management. Being
an orchestrator for large scale infrastructure, Kubernetes should

be well suited to this kind of dynamic reconfiguration. While the
WLM should also be prepared to drain nodes dynamically, this will
likely affect the queuing, since nodes requested by a job may not
be available anymore.

6.2 WLM in Kubernetes
Automating the different services of a WLM such as Slurm on a
Kubernetes cluster, or any cloud orchestration service, represents
the simplest of the integration scenarios described in this paper, and
cloud native solutions have been proposed [27]. If the containers
receive privileged access to the underlying high-speed network and
accelerators, the WLM can be used to schedule HPC jobs as in a
classical HPC system setup. This approach does not enable running
containerized workloads within the WLM. The WLM merely acts
as a classic job scheduler, avoiding the need to rewrite workflows
to directly use e.g. mpirun and the WLM facilities to provision
resources.

For compute centers, this setup may provide a flexible multi-
tenancy architecture, but its implementation has some caveats.
Recent WLM versions can run within unprivileged containers, but
setting up resources like accelerators or HPC network devices re-
quires extended privileges, possibly even to the fabric. Great care
must thus be applied when scheduling the Pods of different tenants
on the same compute nodes, or when allowing customers to obtain
elevated privileges within the Pods or the Kubernetes instance itself.
This applies when Kubernetes is used by the operator to provide
segmentation of a cluster, and even more so if customers are permit-
ted to directly deploy Pods on the Kubernetes cluster expecting a
self-deployed WLM to obtain privileged access. Virtualization may
alleviate some of the security concerns if properly integrated with
Kubernetes and the fabric, but any possible performance penalties
incurred by the additional layer introduced must be verified.

6.3 Kubernetes in WLM
Initial Kubernetes cluster in WLM allocation setups were evaluated
on VEGA with the CloudHypervisor [18] serving as a Virtual
Machine Monitor (VMM). With the advent of rootless Kubernetes
setups, it is possible to run Kubernetes as a non-root user with the
same technology used for running containers. This can be exploited
to not only run Kubelets, but to also launch minimal Kubernetes
K3s and Minikube clusters within a WLM allocation.

In this WLM allocation, the first node runs a minimal Kuber-
netes instance, with the other nodes running the Kubelets connect-
ing back to this first node. The network is fully managed by the

173

SC-W 2023, November 12–17, 2023, Denver, CO, USA Nina Mujkanovic, Juan J. Durillo, Nicolay J. Hammer, and Tiziano Müller

WLM, and should not require additional configuration. While this
approach permits perfect isolation between Kubernetes clusters
started by different users, it can introduce considerable startup
overhead. Until the Kubernetes cluster is ready, scheduling Pods or
running workflows is not possible. Additional difficulties include
the integration of this setup into existing user workflows, as well
as the question of how users specify workloads to run.

6.4 Bridged Kubernetes and WLM
We identified two modalities on how to “bridge” Kubernetes and
HPC WLMs. The first one is via Kubernetes Operators[28], allow-
ing Kubernetes to schedule external resources. By providing such
a bridge operator, users of Kubernetes can use the same resource
description model as for the rest of the their workloads to explic-
itly schedule processes on a WLM like LFS, Slurm, or Torque. The
Kubernetes BatchWorking Group is working on extending the cur-
rent description framework to close the gap to the detailed resource
model provided by HPC WLMs. While this can be integrated with
common workflow managers like Kubeflow [24], the drawback of
this approach is the required explicit formulation in the resource
description.

A more elegant approach, named KNoC, and recently published
by Maliaroudakis et al. [29], is the implementation of a virtual Ku-
bernetes agent or Kubelet. In contrast to the first, external resource
management modality outlined above, a separate service acts as
a regular Kubelet. It schedules Pods as jobs by starting containers
using e.g. Apptainer [38] within WLM allocations, then tracks
their execution and reports back. This execution happens in an
almost transparent way to the user of the Kubernetes cluster and
to the operators of the HPC cluster, who only have to provide the
capability to run containers within their WLM.

6.5 Kubernetes Agents in WLM Allocation
Similar to the previous scenario, this relies on a dedicated Ku-
bernetes cluster. Rather than reallocate complete compute nodes,
Kubernetes agents (Kubelets) are started as part of a WLM allo-
cation (e.g. one Kubelet on each node). These agents then have
to be able to connect back to the Kubernetes cluster to receive
instructions on which containers to run. This scenario relies on the
rootless-approach to run Kubernetes, and requires a compatible
configuration between the WLM and Kubernetes. This includes
enabling version 2 of the Linux cgroups framework, cgroup delega-
tions, and setting a suitable network configuration.

As with the KNoC approach described above, the advantage of
this approach is that all the accounting information is available
within the WLM. The main difference to KNoC is that the vanilla
K3s distribution can be used on the Kubelet side, with any exten-
sions required for scheduling being added to the main Kubernetes
cluster. KNoC’s design relies on the VirtualKubelet [44] project
and an underlying implementation for scheduling the Pod via the
WLM. The Pod environment produced by this implementation may
undesirably deviate from the standard of Kubernetes.

Our Kubernetes agent in WLM allocation solution caters to the
needs formulated at the beginning of section 6:

Kubernetes Node

Compute Node x0001

Job Allocation User Riley

WLM Mgmt Node

Request Pod
WLM

Scheduler

Request Kubelet
for user Riley

Riley

Launch job with Kubelet
Connect to Kubernets cluster
and launch requested Pods

Figure 1: Principle of running Kubernetes Kubelets dynami-
cally within a WLM job allocation. [7]

• We want a continuously run Kubernetes cluster to schedule
workflows without requiring the user to start a full Kubernetes
first via the WLM.

• Workloads or Kubernetes Pods should be scheduled on compute
nodes within a Slurm allocation, so as to use Slurms accounting
and compute resources.

• Pods should run transparently on compute nodes (no changes
to existing workflows).

A proof-of-concept of this approach has been implemented to
show the feasibility of building a Kubernetes cluster across the high-
speed network of a compute cluster using Slingshot, and is shown
in figure 1. A user requests a Pod from the Kubernetes cluster, which
generates a request for the WLM to start a Kubelet on a compute
node. The Kubelet connects to the Kubernetes cluster, which then
has the resources to schedule the requested Pod.

6.6 Summary
Static partitioning leads to reduced utilisation and/or a load imbal-
ance, while dynamic partitioning, including dynamically draining
or undraining nodes from Slurm or Kubernetes, is cumbersome,
slow and introduces disturbances to the system which may be diffi-
cult to monitor. Accounting of CPU time has to be monitored and
consolidated separately. Running the WLM in Kubernetes does
not provide accounting for Kubernetes jobs via the WLM, and
potentially introduces performance bottlenecks. Forwarding hard-
ware resources, in particular vendor interfaces, in a secure way is
non-trivial in this setting. Conversely, running all of Kubernetes
within a WLM allocation leads to long startup times and requires
allocations to be able to submit jobs to Kubernetes. Finally, using a
Kubernetes-WLM Operator requires a change in workflow scripts.

The only solutions satisfying the requirements are therefore the
ones mentioned in section 6.5 and the second part of 6.4. Yet for both
approaches, secure multi-tenancy and transparent scheduling of
multi-node Pods remain challenging, with the latter likely requiring
support of the workflow manager used for scheduling.

174

Survey of adaptive containerization architectures for HPC SC-W 2023, November 12–17, 2023, Denver, CO, USA

7 CONCLUSION AND OUTLOOK
We have highlighted the specific needs of high-performance com-
pute systems and sites, and provided an in-depth analysis of un-
derlying operating system mechanisms. We categorized the most
prominent cloud and, especially, HPC container solutions according
to the evaluated system mechanisms, providing a decision docu-
ment for supercomputer operation centers. A special focus was
given to security-relevant decision criteria.

From the given analysis, we infer that the Apptainer and Sin-
gularity family of container solutions has a unique feature set,
permitting their application to a wide range of deployment scenar-
ios, if one is willing to compromise on security. Beyond this, the
HPC-specific solutions closely match what cloud-focused solutions
like Podman provide, except for flattened filesystem images, namely
unpriviled UserNS without setuid, and using FUSE-based drivers.
With registries like Quay [39]or Dragonfly [12] providing eStargz
or EroFS images, which can be either generated on-the-fly or up-
loaded in addition to the OCI compatible layers, we assume it will
not be long until these formats are evaluated, and possibly adopted,
for HPC usage as an alternative to SIF. And while Singularity has pi-
oneered the support of encryption and signing, registry-supported
solutions for both are being introduced in the cloud compute ecosys-
tem via the Notary [37], sigstore, and ocicrypt [10] projects.
Given that cloud computing is the driving force behind container
development, we expect HPC to follow suite.

In section 6, we discussed why integration with Kubernetes may
become relevant for supercomputing centers, and reviewed sev-
eral solutions, finally proposing a new one. Two approaches were
identified to address HPC needs, with their differences lying in
the granularity of the scheduling, and their capability to provide a
standard Kubernetes execution environment. For both approaches,
multi-tenancy and security aspects must still be worked out. We
did not, however, discuss the practicalities of data locality and
movement. For container solutions, we highlighted the aspect of
UID/GID mapping back to the original filesystem, indicating a man-
ually managed and likely non-federated storage such as a cluster
filesystem. The biggest advantage of API-based job scheduling via
Kubernetes would be its neutrality towards the execution engine
and placement, making it possible to have workflow engines place
the execution of processes based on different criteria. This leaves
the remaining challenge of data movement in HPC, as cloud en-
vironments often focus on object storage, while HPC uses cluster
filesystems.

Our analysis provides the required data points to solve both
containerization and abstract scheduling of applications aspects
on HPC systems. What remains beyond this in regards to adaptive
containerization within HPC is the challenge of optimizing contain-
ers, selecting the most fitting optimized container, and generating
optimal runtime parameters for the respective target hardware in
an automated fashion, as well as scalable registry architectures for
the optimized storage and retrieval of containers. We previously
worked on the issue of container build optimization by using input
from the user in combination with performance modeling, then
mapping the optimal application parameters to a target infrastruc-
ture and building an optimized container [30]. Challenges faced
while working on this project included the costliness of running
benchmarks on each given hardware and for each container to

create the baselines for the performance modeling; the multitude
and complexity of available performance providing components
such as compilers, libraries, etc.; and the storage, matching, and
retrieval methods for the thus created containers.

As containers may be stored in local or public registries, over-
lap of tags used to label each container may complicate accurate
identification and retrieval of optimal containers, thus making clear
guidelines for the labeling of containers to improve metadata-aware
container indexing, lookup, and selection, a necessity. Internet ac-
cess restrictions make building new or reusing existing containers
cumbersome, and built containers must often be shared via the
filesystem, an issue which may be solved by implementing site-
local registries as a proxy for third-party registries, and to directly
host filesystem images such as SIF or SquashFS. Finally, the user
must be guided through the selection of the best matching container
and the optimal runtime parameters, a process that currently can
not be accomplished fully automatically due to the multitude of
applications, container sources, and metadata application styles,
which is additionally complicated by the hardware heterogeneity
of modern HPC systems. Security policies of sites often prohibit
users from building their own containers, necessitating new guide-
lines regarding the roles of users and system administrators in the
process of adding applications on user behest.

ACKNOWLEDGMENTS
The authors would like to thank Alfio Lazzaro, HPE HPC/AI EMEA
Research Lab, for the very valuable discussions and early feedback
on the draft. The authors would also like to thank the Gauss Centre
for Supercomputing e.V. (GCS) (www.gauss-centre.eu) for funding
this project as part of an innovation partnership aimed at a next-
generation GCS supercomputer at the Leibniz Supercomputing
Centre (www.lrz.de). We thank the European Commission for con-
tinued funding of research on this topic under the Horizon project
OpenCUBE (GA-101092984).

REFERENCES
[1] Subil Abraham, Arnab K Paul, Redwan Ibne Seraj Khan, and Ali R Butt. 2020.

On the use of containers in high performance computing environments. In 2020
IEEE 13th International Conference on Cloud Computing (CLOUD). IEEE, Virtual,
284–293.

[2] Angel M. Beltre, Pankaj Saha, Madhusudhan Govindaraju, Andrew Younge,
and Ryan E. Grant. 2019. Enabling HPC Workloads on Cloud Infrastructure
Using Kubernetes Container Orchestration Mechanisms. In 2019 IEEE/ACM
International Workshop on Containers and New Orchestration Paradigms for
Isolated Environments in HPC (CANOPIE-HPC). IEEE, Denver, 11–20. https:
//doi.org/10.1109/CANOPIE-HPC49598.2019.00007

[3] Lucas Benedicic, Felipe A. Cruz, Alberto Madonna, and Kean Mariotti. 2019.
Sarus: Highly Scalable Docker Containers for HPC Systems. In High Performance
Computing (Lecture Notes in Computer Science), MichèleWeiland, Guido Juckeland,
Sadaf Alam, and Heike Jagode (Eds.). Springer International Publishing, Cham,
46–60. https://doi.org/10.1007/978-3-030-34356-9_5

[4] Lucas Benedicic, Miguel Gila, Sadaf Alam, and T Schulthess. 2016. Opportunities
for container environments on Cray XC30 with GPU devices. In Cray Users Group
Conference (CUG16). Cray User Group, London, 1–11.

[5] Ouafa Bentaleb, Adam S. Z. Belloum, Abderrazak Sebaa, and Aouaouche El-
Maouhab. 2022. Containerization Technologies: Taxonomies, Applications and
Challenges. J Supercomput 78, 1 (Jan. 2022), 1144–1181. https://doi.org/10.1007/
s11227-021-03914-1

[6] Emiliano Casalicchio and Stefano Iannucci. 2020. The state-of-the-art in con-
tainer technologies: Application, orchestration and security. Concurrency and
Computation: Practice and Experience 32, 17 (2020), e5668.

[7] Kubernetes Community. 2023. Community/Icons at Master · Kuber-
netes/Community. https://github.com/kubernetes/community/tree/master/icons.
Icons provided by the Kubernetes Community under CC-BY-4.0 license..

175

https://doi.org/10.1109/CANOPIE-HPC49598.2019.00007
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00007
https://doi.org/10.1007/978-3-030-34356-9_5
https://doi.org/10.1007/s11227-021-03914-1
https://doi.org/10.1007/s11227-021-03914-1

SC-W 2023, November 12–17, 2023, Denver, CO, USA Nina Mujkanovic, Juan J. Durillo, Nicolay J. Hammer, and Tiziano Müller

[8] ReFrame HPC community. 2023. ReFrame. https://github.com/reframe-hpc/
reframe

[9] Containers. 2023. Containers/Crun. https://github.com/containers/crun
[10] Containers. 2023. OCIcrypt Library. https://github.com/containers/ocicrypt
[11] NVIDIA Corporation. 2023. ENROOT. https://github.com/NVIDIA/enroot
[12] dragonflyoss. 2023. Dragonfly. https://github.com/dragonflyoss/Dragonfly2
[13] Dave Dykstra. 2022. Apptainer Without Setuid. https://doi.org/10.48550/arXiv.

2208.12106 arXiv:2208.12106 [cs]
[14] Daniel Fulton. 2022. Containers for HPC: Shifter and Podman. https://www.

nersc.gov/assets/Uploads/06-Containers-for-HPC-Shifter-and-Podman.pdf
[15] Yiannis Georgiou, Naweiluo Zhou, Li Zhong, Dennis Hoppe, Marcin Pospieszny,

Nikela Papadopoulou, Kostis Nikas, Orestis Lagkas Nikolos, Pavlos Kranas, Sophia
Karagiorgou, et al. 2020. Converging HPC, Big Data and Cloud technologies for
precision agriculture data analytics on supercomputers. InHigh Performance Com-
puting: ISC High Performance 2020 International Workshops, Frankfurt, Germany,
June 21–25, 2020, Revised Selected Papers 35. Springer, Frankfurt, 368–379.

[16] Harbor. 2023. Harbor. https://github.com/goharbor/harbor
[17] Red Hat. 2023. Containers/Podman: Podman: A Tool for Managing OCI Contain-

ers and Pods. https://github.com/containers/podman
[18] Cloud Hypervisor. 2023. Cloud Hypervisor. https://github.com/cloud-

hypervisor/cloud-hypervisor
[19] Sylabs Inc. 2023. SingularityCE. https://github.com/sylabs/singularity
[20] Open Container Initiative. 2023. Runc. https://github.com/opencontainers/runc
[21] Douglas M Jacobsen and Richard Shane Canon. 2015. Contain This, Unleashing

Docker for HPC. In CUG2015. Cray User Group, Chicago, 33–49.
[22] k3s io. 2023. K3s - Lightweight Kubernetes. https://github.com/k3s-io/k3s
[23] Rafael Keller Tesser and Edson Borin. 2022. Containers in HPC: A Survey. J.

Supercomput. 79, 5 (Oct. 2022), 5759–5827. https://doi.org/10.1007/s11227-022-
04848-y

[24] Kubeflow. 2023. Kubeflow/Kubeflow. https://github.com/kubeflow/kubeflow
[25] Kubernetes. 2023. Kubernetes (K8s). https://github.com/kubernetes/kubernetes
[26] SchedMD LLC et al. 2023. Slurm. Slurm Development and Support. https:

//github.com/SchedMD/slurm
[27] Sergio López-Huguet, J. Damià Segrelles, Marek Kasztelnik, Marian Bubak, and Ig-

nacio Blanquer. 2020. Seamlessly Managing HPCWorkloads Through Kubernetes.
InHigh Performance Computing (Lecture Notes in Computer Science), Heike Jagode,
Hartwig Anzt, Guido Juckeland, and Hatem Ltaief (Eds.). Springer International
Publishing, Cham, 310–320. https://doi.org/10.1007/978-3-030-59851-8_20

[28] Boris Lublinsky, Elise Jennings, and Viktória Spišaková. 2022. A Kubernetes
’Bridge’ Operator between Cloud and External Resources. https://doi.org/10.
48550/arXiv.2207.02531 arXiv:2207.02531 [cs]

[29] Evangelos Maliaroudakis, Antony Chazapis, Alexandros Kanterakis, Manolis
Marazakis, and Angelos Bilas. 2022. Interactive, Cloud-NativeWorkflows on HPC
Using KNoC. In High Performance Computing. ISC High Performance 2022 Inter-
national Workshops (Lecture Notes in Computer Science), Hartwig Anzt, Amanda
Bienz, Piotr Luszczek, and Marc Baboulin (Eds.). Springer International Publish-
ing, Cham, 221–232. https://doi.org/10.1007/978-3-031-23220-6_15

[30] Nina Mujkanovic, Karthee Sivalingam, and Alfio Lazzaro. 2020. Optimising AI
Training Deployments using Graph Compilers and Containers. In 2020 IEEE
High Performance Extreme Computing Conference (HPEC). IEEE, Virtual, 1–8.
https://doi.org/10.1109/HPEC43674.2020.9286153

[31] National Energy Research Scientific Computing Center (NERSC). 2023. Podman-
HPC. https://github.com/NERSC/podman-hpc

[32] VBCF NGS. 2023. Hinkskalle. https://github.com/csf-ngs/hinkskalle
[33] Daniel Nüst, Vanessa Sochat, Ben Marwick, Stephen J Eglen, Tim Head, Tony

Hirst, and Benjamin D Evans. 2020. Ten simple rules for writing Dockerfiles for
reproducible data science. , e1008316 pages.

[34] Claus Pahl, Antonio Brogi, Jacopo Soldani, and Pooyan Jamshidi. 2019. Cloud
Container Technologies: A State-of-the-Art Review. IEEE Transactions on Cloud
Computing 7, 3 (2019), 677–692. https://doi.org/10.1109/TCC.2017.2702586

[35] Reid Priedhorsky, R. Shane Canon, Timothy Randles, and Andrew J. Younge.
2021. Minimizing Privilege for Building HPC Containers. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’21). Association for Computing Machinery, New York, NY,
USA, 1–14. https://doi.org/10.1145/3458817.3476187

[36] Reid Priedhorsky and Tim Randles. 2017. Charliecloud: Unprivileged Containers
for User-Defined Software Stacks in HPC. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC ’17). Association for Computing Machinery, New York, NY, USA, 1–10. https:
//doi.org/10.1145/3126908.3126925

[37] Notary Project. 2023. Notary Project Specifications. https://github.com/
notaryproject/specifications

[38] The Apptainer Container Project. 2023. Apptainer. https://github.com/apptainer/
apptainer

[39] QUAY. 2023. Project Quay. https://github.com/quay/quay
[40] Sigstore. 2023. Cosign. https://github.com/sigstore/cosign
[41] Sigstore. 2023. Sigstore. https://www.sigstore.dev/
[42] Vanessa Sochat and Alec Scott. 2021. Collaborative Container Modules with

Singularity Registry HPC. JOSS 6, 63 (July 2021), 3311. https://doi.org/10.21105/
joss.03311

[43] Harmen Stoppels, Simon Pintarelli, and Ben Cumming. 2023. Squashfs-Mount.
Swiss National Supercomputing Center (CSCS). https://github.com/eth-cscs/
squashfs-mount

[44] virtual kubelet. 2023. Virtual Kubelet. https://github.com/virtual-kubelet/virtual-
kubelet

[45] Tim Wickberg. 2022. Slurm and/or/vs Kubernetes.
[46] Laura Wratten, Andreas Wilm, and Jonathan Göke. 2021. Reproducible, scalable,

and shareable analysis pipelines with bioinformatics workflow managers. Nature
methods 18, 10 (2021), 1161–1168.

[47] Junqi Yin, Shubhankar Gahlot, Nouamane Laanait, Ketan Maheshwari, Jack
Morrison, Sajal Dash, and Mallikarjun Shankar. 2019. Strategies to Deploy
and Scale Deep Learning on the Summit Supercomputer. In 2019 IEEE/ACM
Third Workshop on Deep Learning on Supercomputers (DLS). IEEE, Denver, 84–94.
https://doi.org/10.1109/DLS49591.2019.00016

[48] Andrew Younge. 2021. Constructing Containers for Exascale Computing. Technical
Report. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).

[49] Andrew J. Younge, Kevin Pedretti, Ryan E. Grant, and Ron Brightwell. 2017.
A Tale of Two Systems: Using Containers to Deploy HPC Applications on Su-
percomputers and Clouds. In 2017 IEEE International Conference on Cloud Com-
puting Technology and Science (CloudCom). IEEE, Hong Kong, 74–81. https:
//doi.org/10.1109/CloudCom.2017.40

[50] Naweiluo Zhou, Huan Zhou, and Dennis Hoppe. 2023. Containerisation for High
Performance Computing Systems: Survey and Prospects. IIEEE Trans. Software
Eng. 49, 4 (April 2023), 2722–2740. https://doi.org/10.1109/TSE.2022.3229221
arXiv:2212.08717 [cs]

[51] The zot Project. 2023. Zot. https://github.com/project-zot/zot

176

https://github.com/reframe-hpc/reframe
https://github.com/reframe-hpc/reframe
https://github.com/containers/crun
https://github.com/containers/ocicrypt
https://github.com/NVIDIA/enroot
https://github.com/dragonflyoss/Dragonfly2
https://doi.org/10.48550/arXiv.2208.12106
https://doi.org/10.48550/arXiv.2208.12106
https://arxiv.org/abs/2208.12106
https://www.nersc.gov/assets/Uploads/06-Containers-for-HPC-Shifter-and-Podman.pdf
https://www.nersc.gov/assets/Uploads/06-Containers-for-HPC-Shifter-and-Podman.pdf
https://github.com/goharbor/harbor
https://github.com/containers/podman
https://github.com/cloud-hypervisor/cloud-hypervisor
https://github.com/cloud-hypervisor/cloud-hypervisor
https://github.com/sylabs/singularity
https://github.com/opencontainers/runc
https://github.com/k3s-io/k3s
https://doi.org/10.1007/s11227-022-04848-y
https://doi.org/10.1007/s11227-022-04848-y
https://github.com/kubeflow/kubeflow
https://github.com/kubernetes/kubernetes
https://github.com/SchedMD/slurm
https://github.com/SchedMD/slurm
https://doi.org/10.1007/978-3-030-59851-8_20
https://doi.org/10.48550/arXiv.2207.02531
https://doi.org/10.48550/arXiv.2207.02531
https://arxiv.org/abs/2207.02531
https://doi.org/10.1007/978-3-031-23220-6_15
https://doi.org/10.1109/HPEC43674.2020.9286153
https://github.com/NERSC/podman-hpc
https://github.com/csf-ngs/hinkskalle
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1145/3458817.3476187
https://doi.org/10.1145/3126908.3126925
https://doi.org/10.1145/3126908.3126925
https://github.com/notaryproject/specifications
https://github.com/notaryproject/specifications
https://github.com/apptainer/apptainer
https://github.com/apptainer/apptainer
https://github.com/quay/quay
https://github.com/sigstore/cosign
https://www.sigstore.dev/
https://doi.org/10.21105/joss.03311
https://doi.org/10.21105/joss.03311
https://github.com/eth-cscs/squashfs-mount
https://github.com/eth-cscs/squashfs-mount
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/virtual-kubelet/virtual-kubelet
https://doi.org/10.1109/DLS49591.2019.00016
https://doi.org/10.1109/CloudCom.2017.40
https://doi.org/10.1109/CloudCom.2017.40
https://doi.org/10.1109/TSE.2022.3229221
https://arxiv.org/abs/2212.08717
https://github.com/project-zot/zot

	Abstract
	1 Introduction
	2 Motivation
	3 Concepts
	3.1 Terminology
	3.2 HPC Requirements

	4 Container Engine Comparison
	4.1 Discussion
	4.2 Summary

	5 Container Registry and CI/CD comparison
	5.1 Discussion
	5.2 Summary

	6 Kubernetes Integration Scenarios
	6.1 On-Demand Reallocation of Compute Nodes
	6.2 WLM in Kubernetes
	6.3 Kubernetes in WLM
	6.4 Bridged Kubernetes and WLM
	6.5 Kubernetes Agents in WLM Allocation
	6.6 Summary

	7 Conclusion and Outlook
	Acknowledgments
	References

