
AQuantitative Approach for Adopting Disaggregated
Memory in HPC Systems

Jacob Wahlgren

jacobwah@kth.se

KTH Royal Institute of Technology

Sweden

Gabin Schieffer

gabins@kth.se

KTH Royal Institute of Technology

Sweden

Maya Gokhale

gokhale2@llnl.gov

Lawrence Livermore National Laboratory

USA

Ivy Peng

ipeng@acm.org

KTH Royal Institute of Technology

Sweden

ABSTRACT
Memory disaggregation has recently been adopted in data centers

to improve resource utilization, motivated by cost and sustainability.

Recent studies on large-scale HPC facilities have also highlighted

memory underutilization. A promising and non-disruptive option

for memory disaggregation is rack-scale memory pooling, where

node-local memory is supplemented by shared memory pools. This

work outlines the prospects and requirements for adoption and

clarifies several misconceptions. We propose a quantitative method

for dissecting application requirements on the memory system

from the top down in three levels, moving from general, to multi-

tier memory systems, and then to memory pooling. We provide a

multi-level profiling tool and LBench to facilitate the quantitative

approach. We evaluate a set of representative HPC workloads on an

emulated platform. Our results show that prefetching activities can

significantly influence memory traffic profiles. Interference in mem-

ory pooling has varied impacts on applications, depending on their

access ratios to memory tiers and arithmetic intensities. Finally,

in two case studies, we show the benefits of our findings at the

application and system levels, achieving 50% reduction in remote

access and 13% speedup in BFS, and reducing performance variation

of co-located workloads in interference-aware job scheduling.

CCS CONCEPTS
• Hardware → Memory and dense storage; Emerging inter-
faces; • Computer systems organization → Heterogeneous
(hybrid) systems.

KEYWORDS
HPC system, disaggregated memory, multi-tier memory

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SC ’23, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0109-2/23/11. . . $15.00

https://doi.org/10.1145/3581784.3607108

ACM Reference Format:
JacobWahlgren, Gabin Schieffer, Maya Gokhale, and Ivy Peng. 2023. A Quan-

titative Approach for Adopting Disaggregated Memory in HPC Systems. In

The International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’23), November 12–17, 2023, Denver, CO, USA. ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3581784.3607108

1 INTRODUCTION
The memory subsystem is a major consideration for cost and per-

formance of large-scale clusters. In the last decade, the memory

bandwidth wall has emerged as the bandwidth per core continues

to decrease. To satisfy the increasing demand, memory capacity

and bandwidth per node have increased dramatically in the last

15 years, as illustrated in Figure 1. New memory technologies like

high-bandwidth memory (HBM) can provide significant bandwidth.

However, the cost per bit is three to five times that of regular DDR

due to a complex production process and high market demand [13].

Hence, a hybrid of DDR and HBM has become the de-facto memory

configuration on today’s HPC systems as we show in Table 1. For

instance, the No. 1 supercomputer, Frontier, features 512 GB DDR4

and 512 GB HBM per compute node.

The node architecture in clusters and data centers today is mono-

lithic – compute and memory resources are tightly coupled within

a node’s boundary. In a cloud environment, multiple jobs may

share one server through virtualization, and still, recent works

find that substantial node memory is not utilized [24]. In an HPC

environment, the resource allocation is even more coarse-grained

because jobs typically do not share a node. Combined with high

memory capacity per node, this means that memory is often an

under-utilized resource. Recent studies on leadership facilities have

found that fewer than 15% jobs use more than 75% of the node

memory, and that 50% of the time less than 12% of the total memory

is in use [8, 33, 36, 37].

Recently, major cloud operators have started exploring memory

disaggregation to address the challenge of memory utilization, in-

cluding Meta [30] and Microsoft Azure [24]. At a high level, the

idea is to have a portion of memory resources provided on-demand

through remote memory pooling. In memory pool-based systems,

each node has a fixed local memory and a variable amount of fabric-

attached remote memory, effectively a form of a multi-tier memory

system [14]. Previous works have explored using node-local per-

sistent memory, like Intel Optane DC PM, as a second memory

tier [12, 38]. Since Optane is discontinued, and with the recent

https://doi.org/10.1145/3581784.3607108
https://doi.org/10.1145/3581784.3607108
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581784.3607108&domain=pdf&date_stamp=2023-11-11

SC ’23, November 12–17, 2023, Denver, CO, USA Jacob Wahlgren, Gabin Schieffer, Maya Gokhale, and Ivy Peng

Figure 1: The evolution of memory characteristics of top
leadership supercomputers in the past 15 years.

advances in cache-coherent interconnect protocols, i.e., Compute

Express Link (CXL) type 3 devices, memory pooling becomes an

emerging option for implementing the second tier [44].

Existing works in multi-tier systems with memory pooling focus

on cloud infrastructures [18, 19, 24, 26, 27, 30, 39]. Cloud providers

are motivated to guarantee a certain Quality of Service (QoS) while

minimizing their cost, e.g. through increased system utilization.

While their findings and solutions are useful for informing HPC sys-

tems, HPC-oriented studies are needed for factoring in differences

in the deployment environment, user expertise, and expectation.

Therefore, this work aims to lay out the general and practical con-

siderations for adopting disaggregated memory on HPC systems.

Although disaggregated memory is a type of multi-tier memory,

it differs from traditional Non-Uniform Memory Access (NUMA)

systems, which are symmetric, with each NUMA domain contain-

ing the same compute and memory resources, and optimizations

focus on moving computing to cores in the same domain as the

accessed memory pages. Instead, a tiered memory system could

be asymmetric, where some tiers are CPU-less, and optimizations

focus on placing hot pages in faster tiers [24].

We propose a three-level quantitative approach for dissecting

application requirements on the memory system from the top down.

At the top level, an application’s intrinsic requirements on the mem-

ory subsystem are captured and these properties remain preserved

across different memory systems. The second level quantifies the

impact of a general multi-tier memory system and captures the

memory access ratios across different tiers. Finally, the third level

quantifies the impact of memory interference, a specific challenge

of pooling-based multi-tier memory.

Several existing works focus on understanding the performance

degradation or optimizing the data placement on disaggregated

memory [18, 24, 30, 39, 48]. However, instead of providing yet an-

other optimization work of data placement, this paper builds a

generic framework to study an application’s memory behavior and

identify optimization priority and limits, as well as influence de-

ployment options. To facilitate the quantitative study, we provide a

multi-level profiling tool and also LBench , a benchmark for quan-

tifying the impact of memory interference. Our methodology is

applied in a set of diverse applications, including NekRS, SuperLU,

Hypre, HPL, BFS, and XSBench. Finally, in two case studies, we

show that findings from our approach can guide application-level

optimizations on data placement, reducing remote access by 50%

and improving the performance of BFS by 13%, as well as guide

system-level scheduling to reduce performance variation of co-

located jobs.

Rank DDR/node HBM/node HBM BW/node Nodes Est. DDR cost Est. HBM cost
Frontier [22] 512 GB 512 GB 12.8 TB/s 9,408 $ 34 M $ 135 M

Fugaku [17] – 32 GB 1.0 TB/s 158,976 – $ 142 M

LUMI-G [28] 512 GB 512 GB 12.8 TB/s 2,560 $ 9.2 M $ 35 M

Leonardo [4] 512 GB 256 GB 8.2 TB/s 3,456 $ 12 M $ 25 M

Summit [47] 512 GB 96 GB 5.4 TB/s 4,608 $ 17 M $ 12 M

Sierra [21] 256 GB 64 GB 3.6 TB/s 4,284 $ 7.7 M $ 7.7 M

Sunway [9] 32 GB – – 40,960 $ 9.2 M –

Perlmutter (GPU) [34] 256 GB 160 GB 6.2 TB/s 1,536 $ 2.8 M $ 7.0 M

Selene [35] 1 TB 640 GB 16 TB/s 280 $ 2 M $ 4.9 M

Tianhe-2A [10] 192 GB – – 16,000 $ 21.6 M –

Table 1: A summary of memory configuration on Top 10
supercomputers and the estimated memory cost based on
HBM having 3×-5× unit price of DDR [13].

We summarize our contributions in this work as follows:

• We describe the prospects and requirements for adopting disag-

gregated memory in HPC systems.

• We propose a quantitative method for dissecting application

requirements on memory systems in three levels, from general

to multi-tier memory systems and memory pooling.

• We develop a multi-level profiler for facilitating the quantitative

method and LBench for quantifying interference on memory

pooling.

• We evaluate our method in NekRS, SuperLU, Hypre, HPL, BFS,

and XSBench on multiple emulated system configurations and

identified key insights.

• We demonstrate the usage of our method in two case studies, for

optimizing the memory access ratios at the application level and

interference-aware job scheduling at the system level.

2 MOTIVATION AND BACKGROUND
In the past 15 years, as workloads on HPC systems continue evolv-

ing, high computation throughput, massive datasets, complex work-

flow, and emerging machine learning components drive up the

requirements on the memory system (see Figure 1). Table 1 sum-

marizes the memory configuration on today’s top 10 supercom-

puters [42], where memory is becoming a major cost factor. Mean-

while, studies on multiple HPC facilities, including NERSC’s Cori

supercomputer [33] and Livermore Computing’s clusters [37], have

shown that the utilization of memory resources can be as low as

only 15% of scientific workloads utilizing at least 75% memory

resources. In data centers, under-utilization of memory has moti-

vated major cloud providers to leverage disaggregated memory to

provide memory resources as needed and improve overall utiliza-

tion [19, 24, 30].

Disaggregated Memory refers to a type of architecture that decou-

ples memory resources from compute resources so that a flexible

amount of memory resources can be provisioned to each workload.

In contrast, all the supercomputers in Table 1 have a fixed amount

of memory in DDR and HBM, so a job cannot use more than the

specified memory capacity on a node, or it will face out-of-memory

(OOM) errors and abort.

There are two categories of disaggregated memory architectures

– split and pool [14]. In a split architecture, nodes can borrow mem-

ory from each other in a peer-to-peer fashion. In contrast, a Mem-
ory Pool provides a dedicated memory resource shared by multiple

nodes. Memory disaggregation enables peak-of-sums provision-

ing rather than sum-of-peaks provisioning, reducing the required

AQuantitative Approach for Adopting Disaggregated Memory in HPC Systems SC ’23, November 12–17, 2023, Denver, CO, USA

Rack 1

1 2 3 16 1 2 3 16 1 2 3 16 1 2 3 16

Switch 1 Switch 2 Switch 3 Switch 8

...

...

Rack2

1 2 3 16 1 2 3 16 1 2 3 16 1 2 3 16

Switch 1 Switch 2 Switch 3 Switch 8

...

...

…

…

Memory Pool

Figure 2: An HPC system architecture with rack-scale mem-
ory disaggregation. Each node has a fixed node-localmemory.
Nodes in the same rack also share a memory pool.

resources on a system level [26]. Hence, the total ownership cost

(TCO) can be reduced, resulting in a great incentive for major cloud

providers. Previous network-based disaggregation solutions face

challenges of performance degradation. The recent development

of high-performance cache-coherent interconnects, like the CXL

standard, dramatically improves the feasibility and is endorsed by

all major vendors. For HPC systems, a rack-scale memory pooling

architecture, as illustrated in Figure 2, may be the most feasible and

user-transparent design in the near term [14, 32]. This design bears

similarity with the LLNL’s HPE Rabbit storage design [20], where

compute blades in a rack share a pool of SSD storage resources.

2.1 Challenges and Misconceptions
A disaggregated memory system is a specific implementation of

Muti-tier Memory systems. Muti-tier memory is composed of differ-

ent tiers with distinctive performance and capacity. For instance, 8

out of the top 10 supercomputers in Table 1 use HBM-DDR-based

multi-tier memory systems. For the architecture presented in Fig-

ure 2, the node-local memory (light green) forms a top tier, and

the memory pool (dark green) forms the bottom tier of a node’s

memory system.

Memory Interference in a memory pool refers to the influence

from other nodes sharing the same pool. Through the shared mem-

ory pool, interference can cause unpredictable performance degra-

dation of one job due to jobs on other nodes. For example, one

cause for the performance variation is unrelated jobs on different

nodes competing for the link bandwidth between compute node

and memory pools.

Misconceptions of multi-tier memory include that the memory

bandwidth is lower than homogeneous memory. In fact, from the

hardware perspective, adding additional memory tiers (channels)

can increase the aggregate bandwidth. However, a challenge is

to utilize it effectively. Another misconception is that application

performance will always be degraded. Distributed-memory HPC

applications have the option to minimize exposure to the pooled

memory tier by scaling to more compute nodes instead.

2.2 Practical Considerations for Adoption
The differences between HPC and cloud systems have to be con-

sidered for adoption. HPC applications consist of many optimized

numerical kernels, run in multiple bare-metal nodes tightly cou-

pled byMPI communication, without virtualization or node sharing.

Cloud workloads like web services, and databases, are optimized

Hardware Configuration

Socket 1

Memory 1

Socket 2

Memory 2

Target memory access characteristics
(Access to each memory tier,

prefetching events,
R/W-ratio, locality, …)

Custom Profiler

Application

hook

Allocation
calls

Interference
generator
(LBench)

Custom Profiler

Custom Profiler Custom Profiler

Figure 3: The overall architecture of the three-level memory-
centric profiler and the emulation platform.

for tail latency of requests. Cloud environments are virtualized and

users share physical nodes. Also, the incentive structures are differ-

ent. While cloud providers are motivated to reduce costs while still

meeting the same service quality, HPC users are responsible for

delivering the performance of their applications. Thus, approaches

derived for cloud may be inapplicable on HPC, e.g., prefetching is

found to be harmful in [29], but we find it necessary for HPC. Cloud

solutions are mostly based on extended hypervisors or managed

runtimes, while HPC infrastructures do not have such layers. Here,

we highlight several practical requirements for adopting disaggre-

gated memory in HPC systems.

Low Porting Efforts. For wide adoption in HPC, the changes in

architecture should aim to require low porting efforts. One solution

for transparent porting is extending current NUMA system support.

As an example, a recent kernel patch implements non-uniform in-

terleaving policies [50] which enables applications to transparently

utilize the aggregated bandwidth of tiered memory [41]. Alter-

natively, existing memory allocators can be extended to support

multi-tier systems.

Low Performance Variation. Many runtime solutions for opti-

mizing data placement on multi-tier memory systems are proposed.

While automatic NUMA support requires low porting efforts, run-

times take time to collect enough information for decisions and are

often slow in adapting to changes in access patterns, resulting in

performance variation from run to run. HPC applications, however,

demand more deterministic and reproducible performance.

Incentive for Computing Facility. End users of HPC systems

are usually not incentivized to improve system-level resource uti-

lization. Therefore, the computing facility needs to be the main dri-

ver for adoption. Potential incentives for facilities to adopt memory

pooling include sustainability, the feasibility of separate upgrading

of system components, and reduced costs.

3 METHODOLOGY
In this work, we employ a three-level top-down approach. In the

first level, we identify an application’s intrinsic requirements on

memory systems, independent of exact system architecture. The

second level extends the application requirements onto general

multi-tier memory systems and leverages a memory roofline model.

The final level investigates the specific memory interference chal-

lenge when the lower tier is backed by memory pooling on an HPC

SC ’23, November 12–17, 2023, Denver, CO, USA Jacob Wahlgren, Gabin Schieffer, Maya Gokhale, and Ivy Peng

I. Initial Setup

II. Level 1
Profiling

III. Tiers Setup

IV. Level 2
Profiling

V. Level 3
Profiling

export LD_PRELOAD="~/nmo/lib/libnmo.so"
alias ./app="numactl -N0 ./XSBench -p 2000000 -t 8"

NMO_TRACK_RSS=1 ./app NMO_MODE=counters ./app

NMO_MODE=sample ./app NMO_MODE=prefetch ./app

sudo ~/nmo/bin/setup_waste 4982 & Repeat for 25%, 50%, 75%
of peak usage in MB.

NMO_MODE=counters ./app

~/nmo/intf/gauge_loop.sh &
./app

~/nmo/intf/upi.sh 2 10 &
./app

Step III command still running in the
background in steps IV–V.

Figure 4: A step-by-step overview of the profiling workflow
with example commands.

architecture illustrated in Figure 2. Figure 4 presents the experi-

mental workflow, where each level of execution collects profiling

information that can be visualized separately.

3.1 Multi-level Profiling
We develop a multi-level profiler to support the three-level memory-

centric analysis methodology. The profiler uses low-overhead hard-

ware performance counters to capture application-level metrics,

such asmemory accesses in different levels of thememory hierarchy.

Besides program-level profiling, the profiler also offers APIs, i.e.,

pf_start("tag") and pf_stop(), for simple tracing support to

attribute results to specific kernels. This section details our method-

ology based on Linux and the Intel Skylake-X architecture. Key

performance events are also available on other architectures, e.g.

AMD’s Instruction-Based Sampling and ARM’s Statistical Profiling

Extension. Kernel-based page-level profiling may be used as an al-

ternative, but would require extensive changes. Our method can be

adapted for general multi-tier memory (e.g. DDR+HBM, PM+DDR),

only needing to change selected performance events.

Level 1: General Characteristics. The first level of profiling
aims to understand an application’s requirements on the memory

subsystem. These include its arithmetic intensity, memory capacity

usage, bandwidth usage, and access pattern. The arithmetic inten-

sity is measured using hardware performance counters, enabling us

to place the application into a roofline model. The number of bytes

loaded is measured with the OFFCORE_RESPONSE:L3_MISS events.
The offcore events include all memory loads, including hardware

prefetchers. The memory capacity usage is measured by sampling

the numa_maps file in procfs. The memory access pattern is mea-

sured in two ways, first using precise event-based sampling (PEBS)

to record the virtual address of demand load misses. Secondly, coun-

ters related to hardware prefetching are measured to understand if

the access pattern is predictable.

Level 2: Multi-Tier Memory Access. In a multi-tier environ-

ment, we define two key metrics. The remote capacity ratio is the
ratio of lower-tier memory to total available memory. In our setup,

it can be measured from numa_maps. The remote access ratio is the
ratio of memory accesses to a lower tier. In our setup, it is measured

using the LOCAL_DRAM and REMOTE_DRAM offcore events. The event-
based sampling of memory accesses is also extended to multiple

tiers by separating cache miss events to local or remote memory.

Level 3: Memory Interference. A disaggregated memory sys-

tem is a specific form of multi-tier memory system. When memory

pools are used to decouple memory from compute, interference

from other nodes sharing the memory pool may impact perfor-

mance. In Section 3.2, we present a benchmark for measuring both

the interference sensitivity and induced interference of an appli-

cation. The interference sensitivity determines the performance

degradation due to remote memory interference, and the induced in-

terference determines how much interference an application causes

for others. We measure the injected traffic at the system level using

the UPI counters sktXtraffic in Intel PCM. Note that link traffic

may exceed the peak data bandwidth due to protocol overheads.

3.2 Measuring Memory Interference
We developed a benchmark called LBench based on the methodol-

ogy in [7] for injecting and quantifying interference on the link to

the memory pool. The benchmark allocates an array on the memory

pool and performs a simple numerical kernel similar to Empirical

Roofline Toolkit [51] on the array. We define the level of inter-

ference (denoted 𝐿𝑜𝐼) as the percentage of generated link traffic

compared with the peak link traffic (which is 1 flop, 12 threads on

our testbed). 𝐿𝑜𝐼 is configured by varying the number of floating-

point operations per array element in the kernel. We present a code

snippet of the kernel’s inner loop below.

1 i f (NFLOP % 2 == 1)

2 b e t a = A[i] + a lpha ;

3 const int NLOOP = NFLOP / 2 ;

4 #pragma GCC un r o l l 16

5 for (in t k = 0 ; k < NLOOP ; k++)

6 b e t a = be t a ∗ A[i] + a lpha ;

7 A[i] = be t a ;

By measuring the link traffic using level 3 profiling, we de-

termine the number of flops per element corresponding to each

level of intensity (i.e., 𝐿𝑜𝐼 = 10, 20, ...). One advantage of using

LBench over raw performance counters (PCM) is that PCM cannot

measure contention beyond the saturation point. For instance, the

measured traffic saturates at the link bandwidth (e.g., 85 GB/s on

our testbed), while the contention will still increase due to queue-

ing. With LBench , we can distinguish between saturated and con-

tended links. Our validation results in Section 6 confirm that using

LBench for quantifying interference can reach higher precision than
raw performance counter measurement.

We also define a metric called interference coefficient (denoted as

𝐼𝐶) by running LBench with one thread with 1 flop/element for a

set number of iterations and measuring the relative runtime 𝑇 of

LBench . The interference coefficient is calculated as IC = 𝑇
𝑇idle system

.

The interference coefficient quantifies the interference induced by

an application on the system.

3.3 Emulation Platform
We configure an emulation platform for thememory pool in Figure 2.

The methodology uses the socket interconnect in a dual-socket sys-

tem to emulate a coherent disaggregated memory system. Similar

methods are used in [24, 30, 53]. The default first-touch page allo-

cation policy places allocations onto the local NUMA node until

full, before spilling to other NUMA nodes (the remote memory).

The emulation platform uses an Intel Xeon testbed with two

sockets and one NUMA node per socket. As illustrated in Figure 3,

AQuantitative Approach for Adopting Disaggregated Memory in HPC Systems SC ’23, November 12–17, 2023, Denver, CO, USA

HPL-p1

HPL-p2

SuperLU-p1

SuperLU-p2

SuperLU-p3

NekRS-p1

NekRS-p2

Hypre-p1

Hypre-p2
XS-p2

0.5

1

2

4

8

16

32

64

128

256

512

1024

0.
01

0.
02

0.
04

0.
08

0.
16

0.
32

0.
64

1.
28

2.
56

5.
12

10
.2
4

20
.4
8

40
.9
6

81
.9
2

16
3.
84

32
7.
68

Th
ro

ug
hp

ut
 (G

flo
ps

/s
)

floating-point operations per byte from DRAM

Peak FLOPS/s

Peak Memory Bandwidth GB/s

Figure 5: A roofline model built on our test platform. Dashed
lines indicates extension by adding additional memory tiers.

one socket represents a compute node, and the memory on the

other socket represents a memory pool. The cores on the second

socket are not used. The UPI interconnect between them represents

the remote link. The intra-socket bandwidth is 73 GB/s and latency

is 111 ns, while the inter-socket bandwidth is 34 GB/s and latency

is 202 ns. The Linux kernel version is 5.14. For consistent results,

we disable NUMA balancing and transparent huge pages (THP).

3.4 Analytical Models
We use the standard roofline model and an extended memory

roofline model to identify performance bottlenecks and hardware

limits. The roofline model [51] was proposed to model the attain-

able peak performance 𝑃 of a program with arithmetic intensity 𝐼 ,

defined as the number of floating-point operations per byte trans-

ferred from main memory. A computing platform is described by its

peak computing power 𝐹 in flop/s and peak memory bandwidth 𝐵

in B/s, where 𝑃 = min(𝐹, 𝐵 · 𝐼). The solid line in Figure 5 presents a

standard roofline model derived from the architecture peak metrics

(e.g., the peak flops from clock speed and AVX-512 vectors) and

STREAM benchmark results. A roofline model can be further ex-

tended to model other limiting factors. For example, the slope of

memory bandwidth can be adapted to include the impact of mem-

ory interference. The dashed line in Figure 5 indicates an increase

in total memory bandwidth if an additional memory tier is added

to the baseline system.

For fine-grained measurement, we set our profiler to quantify

the throughput in flop/s, and memory access in bytes every second.

Figure 5 reports the measured arithmetic intensity and obtained

throughput for each phase in the evaluated applications in Table 2.

The visualization of the measurement on the roofline model shows

good coverage in arithmetic intensity and throughput. Therefore,

we confirm that the evaluated workloads represent HPC workloads

in the memory-bound to compute-bound spectrum. Furthermore,

fine-grained measurement allows us to separate distinctive phases

with different arithmetic intensities. As reported in Figure 5, each

application typically consists of at least two phases, where the

first phase (denoted as p1) represents the initialization phase. This

experiment only uses the node-local memory and no other co-

running applications.

Application Description Parallelization Input Problems

HPL [11]

High Performance LINPACK benchmark,

dense LU factorization with partial pivoting.
MPI+OpenMP

N=20000

N=28280

N=40000

Hypre [15]

Library of high-performance linear solvers.

We use the structured interface.
MPI+OpenMP

ex4 10 times, n=6300, ranks=1

ex4 10 times, n=6300, ranks=2

ex4 10 times, n=6300, ranks=4

NekRS [16]

Computational fluid dynamics based on the

spectral element method.
MPI

turbPipePeriodic, p=5, dt=1e-2

turbPipePeriodic, p=7, dt=6e-3

turbPipePeriodic, p=9, dt=1e-3

BFS [40]

Graph processing benchmark of the breath-

first search algorithm in the Ligra framework.
OpenMP

symmetric rMat, N=2
24
, M=2

28.24

symmetric rMat, N=2
25
, M=2

29.25

symmetric rMat, N=2
26
, M=2

30.25

SuperLU [25] Sparse LU factorization. MPI+OpenMP

SiO [6] (nnz=1.3M)

H2O [6] (nnz=2.2M)

Si34H36 [6] (nnz=5.2M)

XSBench [43]

Monte Carlo neutron transport proxy

application.
MPI+OpenMP

large, 2M particles, 11303 gridpoints

large, 2M particles, 22606 gridpoints

large, 2M particles, 45212 gridpoints

Table 2: Evaluated workloads with three input problems of
approximately 1:2:4 memory usage ratio.

4 WORKLOAD CHARACTERIZATION
In this section, we focus on the fundamental memory requirements

of an application. We are interested in identifying and abstracting

the properties that persist even when the application is executed on

systems with different memory configurations. Table 2 summarizes

the list of evaluated applications and input problems used in this

paper. Unless otherwise noted, experiments use the first listed input

problem of each application.

4.1 Memory Capacity and Bandwidth Scaling
Capacity and bandwidth are the two primary memory-related con-

siderations when deploying an HPC application. In a typical deci-

sion flow, a user needs to estimate the total memory footprint of

the job and peak memory usage per node, then compare them with

memory capacity per compute node to determine the minimum

number of nodes required. When memory bandwidth is a limiting

factor, a user may decide to increase the number of nodes further for

higher aggregate memory bandwidth. This may be guided by the

roofline model. Other dimensions of this decision include increased

communication and core-hour cost with more nodes.

We propose a memory bandwidth-capacity scaling curve, as

demonstrated in Figure 6, to help users quantify the relationship

between capacity and bandwidth usage. The curve is built using

the memory access sampling in our profiler. After measuring and

aggregating the number of memory accesses by page, we sort pages

into descending order of accesses. Then, we build the cumulative

distribution of accesses to compare with the percentage of memory

footprint. Each application is tested with three input problems of

approximately doubling size.

The bandwidth-capacity scaling curve reveals that HPL and

Hypre exhibit relatively uniformmemory access across the memory

footprint. Such characteristic is consistent with traditional numeri-

cal codes, where nearly all main memory objects are accessed for

computation. In contrast, BFS and XSBench have only a small por-

tion of the memory footprint being actively accessed during the

execution. We check the source code and find that BFS allocates

large graph structures, while only adjacency data will be accessed

during execution. Similarly, XSBench allocates large grid structures

while only sampled points will be looked up.

SC ’23, November 12–17, 2023, Denver, CO, USA Jacob Wahlgren, Gabin Schieffer, Maya Gokhale, and Ivy Peng

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

%
M
em

or
yA

cc
es
s

%MemoryFootprint

NekRS-x1
NekRS-x2
NekRS-x4

(a) NekRS

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

%
M
em

or
yA

cc
es
s

%MemoryFootprint

BFS-x1
BFS-x2
BFS-x4

(b) BFS

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

%
M
em

or
yA

cc
es
s

%MemoryFootprint

SuperLU-x1

SuperLU-x2

SuperLU-x4

(c) SuperLU

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

%
M
em

or
yA

cc
es
s

%MemoryFootprint

HPL-x1
HPL-x2
HPL-x4

(d) HPL

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

%
M
em

or
yA

cc
es
s

%MemoryFootprint

Hypre-x1
Hypre-x2
Hypre-x4

(e) Hypre

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

%
M
em

or
yA

cc
es
s

%MemoryFootprint

XS-x1
XS-x2
XS-x4

(f) XSBench

Figure 6: The cumulative distribution function of memory
accesses and memory footprint in six applications at three
scaled input problems.

A more interesting finding is that all applications but SuperLU

exhibit a consistent bandwidth-capacity scaling pattern across in-

creased input problems. Four applications, NekRS, HPL, Hypre, and

XSBench, have overlapping scaling curves for 1×, 2×, and 4× input

problems, indicating their usage patterns in bandwidth and capac-

ity preserve across input sizes. BFS has the scaling curve shifted

towards the left side of the x-axis when the input problem increases,

indicating the distribution of access is becoming more skewed, with

fewer percentage of pages having more accesses. The change in

SuperLU indicates the distribution of hot pages moving from a

skewed distribution towards a more uniform distribution. Overall,

this scaling curve analysis is a concise visualization tool for HPC

users to unify the two dimensions of memory requirements, i.e.,

bandwidth and capacity, and estimate requirements of larger-scale

problems.

4.2 Hardware Prefetching
We consider the suitability of prefetching as a property determined

by an application’s algorithm and access pattern. Therefore, even

if an application is executed on different systems, the suitability

of prefetching is preserved. With disaggregated memory, prefetch-

ing may become even more important to hide the higher access

latency. A benefit of non-faulting implementations, such as CXL, is

that hardware prefetching can remain fully operational for remote

memory.

To quantify the suitability of prefetching, we propose using two

previously proposed metrics, namely Accuracy and Coverage [29].
Accuracy measures the ratio of prefetched cachelines that have been

actually accessed by the program. Coverage measures the ratio of

cacheline accesses that were prefetched before on-demand access.

Our analysis in this work is based on L2 cache, where the core

hardware prefetcher is located and LLC is an exclusive L3.

On our testbed, we set our profiler to capture measurements from

four hardware counters: PF_L2_DATA_RD, PF_L2_RFO, L2_LINES_IN,

0.E+00

5.E+08

1.E+09

2.E+09

2.E+09

3.E+09

3.E+09

4.E+09

4.E+09

5.E+09

1 11 21 31 41 51 61 71 81 91

N
o.

 o
f L

2
Ca

ch
el

in
es

Time

w. Prefetch
w.o Prefetch

(a) NekRS

0

2E+09

4E+09

6E+09

8E+09

1E+10

1.2E+10

1.4E+10

1.6E+10

1.8E+10

1 11 21 31 41 51 61 71 81 91 101 111 121

N
o.

 o
f L

2
Ca

ch
el

in
es

Time

w. Prefetch

w.o Prefetch

(b) HPL

0

2E+09

4E+09

6E+09

8E+09

1E+10

1.2E+10

1.4E+10

1.6E+10

1.8E+10

1 6 11 16 21 26 31 36

N
o.

 o
f L

2
Ca

ch
el

in
es

Time

w. Prefetch
w.o Prefetch

(c) XSBench

Figure 7: Measured memory traffic in number of cachelines
(y-axis) and runtime (x-axis) in three applications with and
without L2 prefetching enabled.

0%

20%

40%

60%

80%

100%

Prefetch Accuracy Prefetch Coverage Excessive Prefetch Traffic Performance Gain

XS HPL BFS SuperLU Hypre NekRS

Figure 8: Accuracy, coverage, excessive memory traffic, and
performance gain from prefetching in all tested applications

and USELESS_HWPF. We calculate the two metrics as follows.

Accuracy =
PF_L2_DATA_RD + PF_L2_RFO − USELESS_HWPF

PF_L2_DATA_RD + PF_L2_RFO

(1)

Coverage =
PF_L2_DATA_RD + PF_L2_RFO − USELESS_HWPF

L2_LINES_IN − USELESS_HWPF

(2)

Additionally, we execute the workload with prefetching disabled

to determine the performance gain prefetching contributes. Hard-

ware prefetching is disabled by configuring amodel-specific register

in the processor core (the two least significant bits of MSR 0x1a4).

Figure 8 reports the measured prefetching accuracy and cover-

age of each application. All except XSbench and BFS have more

than 80% prefetching accuracy. Hypre and NekRS have the high-

est prefetching coverage – about 70% of L2 cacheline accesses

are prefetched instead of fetched on demand. Figure 8 presents

a timeline of the number of fetched cachelines with and without L2

prefetching in NekRS, HPL, and XSBench, respectively. The results

show that prefetching may contribute to a substantial portion of

memory bandwidth in the tested applications. For instance, Fig-

ure 7a shows that the memory bandwidth consumption in NekRS

is significantly higher when prefetching is enabled. Note that the

total memory traffic in NekRS with prefetching is only 3% higher

than that without prefetching, but the performance gain is as high

as 57%, as reported in Figure 8. A similar observation of prefetching

contributing substantial memory traffic is also identified in cloud

workloads [29]. However, these workloads exhibit low prefetching

accuracy and coverage, and thus, prefetching is considered harm-

ful. In contrast, the high coverage and accuracy, and performance

gain in our experiments indicate the suitability of prefetching for

scientific workloads.

All applications have low excessive memory traffic (2%-6% as

reported in Figure 8) due to prefetching, except SuperLU where the

total memory traffic with prefetching enabled is 37% higher than

that with prefetching disabled. However, the performance gain is

AQuantitative Approach for Adopting Disaggregated Memory in HPC Systems SC ’23, November 12–17, 2023, Denver, CO, USA

almost 31% and thus prefetching is still useful from a performance

perspective. Although XSBench has the lowest accuracy, it also has

low excessive memory traffic (3%) from prefetching, indicating the

prefetching is automatically adapted to a low level when accuracy

is low.

The memory bandwidth-capacity scaling curve unifies two main

factors and aids users in projecting memory usage on different

problems. Prefetching may constitute major memory usage and

is critical for the performance of HPC applications.

5 MULTI-TIER MEMORY
In this section, we cover the application impact when introducing

an additional memory tier. A general multi-tier memory system has

relatively faster but smaller top tiers and slower but larger bottom

tiers. The exact memory technologies for implementing each tier

may vary. For the experiments in this section, we emulate a two-tier

memory system and run the profiler on selected applications to

quantify memory access to each tier.

To capture the impact of multi-tier memory on performance

bottlenecks, a memory roofline model was proposed in previous

work [8] to model the memory access performance as a function of

the local to remote memory access (L:R) ratio. Themodel guides tun-

ing towards high L:R ratios to shift the limit of the memory access

performance toward the peak bandwidth of the fast-tier memory.

In fact, the peak memory performance can be further increased by

leveraging all memory tiers concurrently instead of solely the fast

tier. Therefore, we emphasize balanced local to remote accesses

that match the bandwidth and capacity limit of each memory tier.

5.1 Tiered Memory Access
Two reference points are critical for guiding optimization of appli-

cations on multi-tier memory systems. The first one is the ratio of

the memory capacity of each tier. The second reference point is the

ratio of memory bandwidth of each tier. First, using our profiler, we

quantify the ratio of memory accesses to each memory tier. Then,

we calculate 𝑅𝑖
𝐶𝑎𝑝

, 𝑅𝑖
𝐵𝑊

, and 𝑅𝑖𝑎𝑐𝑐𝑒𝑠𝑠 , respectively, to quantify the

ratio of memory capacity, bandwidth, and access to a tier 𝑖 and

compare them with the two reference points.

Figure 9 reports the measured 𝑅𝑖𝑎𝑐𝑐𝑒𝑠𝑠 of each phase in the

tested applications on three system configurations, where 𝑅𝑖
𝐶𝑎𝑝

=

25%, 50%, 75%. As a validation of our profiler, we also measured

the arithmetic intensity of each phase identified in Section 3.4 by

using 𝐴𝐼 = 𝐹𝐿𝑂𝑃𝑆
𝐵𝑦𝑡𝑒𝐿𝑀+𝐵𝑦𝑡𝑒𝑅𝑀 , where 𝐵𝑦𝑡𝑒𝐿𝑀 denotes the number of

bytes retrieved from local memory tier and 𝐵𝑦𝑡𝑒𝑅𝑀 denotes the

number of bytes retrieved from remote memory tier. The measured

arithmetic intensities are consistent with those reported in the ex-

periment on the single-tier system in Figure 5 and are omitted due

to the space limit.

Figure 9 reports the percentage of accessed bytes from the remote

memory tier among all memory accesses, i.e., 𝑅𝑟𝑒𝑚𝑜𝑡𝑒
𝑎𝑐𝑐𝑒𝑠𝑠 . We also

add two reference lines of 𝑅𝑟𝑒𝑚𝑜𝑡𝑒
𝐵𝑊

and 𝑅𝑟𝑒𝑚𝑜𝑡𝑒
𝐶𝑎𝑝

. 𝑅𝑟𝑒𝑚𝑜𝑡𝑒
𝐵𝑊

is the

turning point of memory access bottleneck, where a 𝑅𝑟𝑒𝑚𝑜𝑡𝑒
𝑎𝑐𝑐𝑒𝑠𝑠 value

lower than 𝑅𝑟𝑒𝑚𝑜𝑡𝑒
𝐵𝑊

indicates that the memory access bottleneck

is bound by the bandwidth of the fast tier. A 𝑅𝑟𝑒𝑚𝑜𝑡𝑒
𝑎𝑐𝑐𝑒𝑠𝑠 value higher

than 𝑅𝑟𝑒𝑚𝑜𝑡𝑒
𝐵𝑊

, however, indicates too many memory accesses to the

slower tier so that the slower tier becomes the limit of memory

access performance. Thus, the 𝑅𝐵𝑊 reference is an upper bound for

tuning. The lower bound of tuning uses the reference of memory

capacity ratios 𝑅𝐶𝑎𝑝 . The ratio of memory accesses to each tier

should at least match the ratio of their capacity.

By leveraging the two reference points and the memory access

metrics from our profiler, optimization opportunities on multi-tier

memory can be identified and prioritized. In Figure 9a, the two

reference lines are close, and most applications (except HPL and XS-

Bench) have their ratios of remote memory access close to the two

optimization reference lines, indicating little optimization space,

and users should not spend efforts in optimizing data placement.

In contrast, Figure 9c presents plenty of optimization opportunities

from the two reference lines. For instance, based on the capacity

ratio, HPL, NekRS, and BFS all exhibit excessive accesses above the

𝑅𝐶𝑎𝑝 (denoted in the dashed red line). The second phase (p2) of

almost all applications is substantially above the bandwidth ratio

(𝑅𝐵𝑊) reference. Although this indicates a large space for optimiza-

tion, it could also mean an ill-balanced design of the memory tiers.

Note that although all phases are included, not all carry the same

weight on the total execution time.

XSBench stands out among all applications in that the remote

access ratio is low (below 6%) in all configurations. This means

that the additional bandwidth from remote memory is not utilized.

However, considering that the prefetching coverage for XSBench

is < 1%, the application is highly sensitive to increased memory

latency. Therefore, reducing latency by minimizing remote memory

exposure is more important than increasing the aggregate memory

bandwidth.

5.2 Phase Changes in Memory Access
HPC applications often consist of several phases. As illustrated in

Figure 5 and Figure 9, phases in an application can have very dif-

ferent profiles of arithmetic intensity and memory access patterns.

This characteristic increases the complexity of optimizing appli-

cations on multi-tier memory systems. For instance, one scheme

for a kernel’s data placement may harm other kernels. This global

optimization is a Knapsack problem which is NP-complete.

Static solutions leverage offline profiling to modify allocation

sites to place a memory variable directly on a suitable memory tier.

Dynamic solutions resort to runtime detection of access patterns to

migrate performance-critical memory pages into the fast tier. The

first direction requires extensive porting efforts and is often not

adaptable to new input problems or system architecture. The second

direction is user transparent. However, performance variation and

indeterministic performance are often unacceptable to HPC end

users. Also, on high-end HPC hardware, phases in an application

are often short in time, while runtime solutions need time to adapt.

Capacity ratio and bandwidth ratio provides two optimization

references and the ratio of memory access to tiers should match

them. The dominant phase with unmatched memory access

distribution should be the priority of optimization.

SC ’23, November 12–17, 2023, Denver, CO, USA Jacob Wahlgren, Gabin Schieffer, Maya Gokhale, and Ivy Peng

0%

20%

40%

60%

80%

100%

HP
L-p
1

HP
L-p
2

Su
pe
rLU
-p1

Su
pe
rLU
-p2

Ne
k-p
1

Ne
k-p
2

Hy
pre
-p1

Hy
pre
-p2

BF
S-p
1

BF
S-p
2

XS
-p1

XS
-p2

%
Re

m
ot
eA

cc
es
s

%RemoteAccess capacity ratio BW Ratio

(a) 75%-25% capacity ratio

0%

20%

40%

60%

80%

100%

HP
L-p
1

HP
L-p
2

Su
pe
rLU
-p1

Su
pe
rLU
-p2

Ne
k-p
1

Ne
k-p
2

Hy
pre
-p1

Hy
pre
-p2

BF
S-p
1

BF
S-p
2

XS
-p1

XS
-p2

%
Re

m
ot
eA

cc
es
s

%RemoteAccess capacity ratio BW Ratio

(b) 50%-50% capacity ratio

0%

20%

40%

60%

80%

100%

HP
L-p
1

HP
L-p
2

Su
pe
rLU
-p1

Su
pe
rLU
-p2

Ne
k-p
1

Ne
k-p
2

Hy
pre
-p1

Hy
pre
-p2

BF
S-p
1

BF
S-p
2

XS
-p1

XS
-p2

%
Re

m
ot
eA

cc
es
s

%RemoteAccess capacity ratio BW Ratio

(c) 25%-75% capacity ratio

Figure 9: The ratio of memory accesses to the second tier on three two-tier memory systems with capacity ratios ranging from
25% to 75%. Label X-pY denotes the Y-th phase of workload X.

0.75

0.8

0.85

0.9

0.95

1

Hypre-p2 Nek-p2 SuperLU-p2 BFS-p2 XS-p2 HPL-p2

Re
la

tiv
e

Pe
rf

or
m

an
ce

LoI=0 LoI=10 LoI=20 LoI=30 LoI=40 LoI=50

(a) 25%-75% capacity ratio

0.75

0.80

0.85

0.90

0.95

1.00

Hypre-p2 Nek-p2 SuperLU-p2 BFS-p2 XS-p2 HPL-p2

Re
la

tiv
e

Pe
rf

or
m

an
ce

LoI=0 LoI=10 LoI=20 LoI=30 LoI=40 LoI=50

(b) 50%-50% capacity ratio

0.75

0.8

0.85

0.9

0.95

1

Hypre-p2 Nek-p2 SuperLU-p2 BFS-p2 XS-p2 HPL-p2

Re
la

tiv
e

Pe
rf

or
m

an
ce

LoI=0 LoI=10 LoI=20 LoI=30 LoI=40 LoI=50

(c) 25%-75% capacity ratio

Figure 10: Quantifying application’s sensitivity to memory interference on three disaggregated memory systems based on
memory pool. Y-axis indicates the relative performance w.r.t LoI=0.

 10

 20

 30

 40

 50

 10 20 30 40 50

M
e
a
su
re
d

 L
o
I
(%

 o
f
p
e
a
k)

Configured LBench intensity (%)

1 thread
2 threads

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 1 2 4 8 16 32 64 128
 0

 20

 40

 60

 80

 100

 120

In
te
rf
e
re
n
ce

 c
o
e
ffi
ci
e
n
t

U
P
I
tr
a
ffi
c
(G
B
/s
)

Workload intensity (flops/element)

LBench (left axis)
PCM (right axis)

H
yp

re

N
ek

R
S

BF
S

Su
pe

rL
U

H
PL

XS
Be

nc
h

1.0

1.2

1.4

1.6

In
te

rfe
re

nc
e

co
ef

fic
ie

nt

Figure 11: The scaling of interference using our benchmark
(left), the comparison of measurement from our benchmark
and raw performance hardware counter (middle), the inter-
ference caused by different applications (right).

6 INTERFERENCE ON MEMORY POOLING
In this section, we focus onmemory pool-based disaggregated mem-

ory systems. As introduced in Section 2, disaggregated memory is

a specific form of multi-tier memory. In the example in Figure 2,

the bottom memory tier is implemented by a memory pool, and

the top memory tier is implemented by each node’s local memory.

As multiple nodes may share the memory pool, a unique challenge

is memory interference from co-running jobs on other nodes. We

use LBench to quantify the impact of memory interference the ap-

plications in Table 2. For each application, we quantify two aspects

of memory interference – its sensitivity to memory interference

and the memory interference caused by the application. The first

metric is important for HPC users to estimate their application’s

performance on future HPC systems equipped with the pool-based

memory tier. The second metric is useful for schedulers to improve

co-location decisions.

The first step of our study is to validate the accuracy and pre-

cision of LBench . Thus, we configure the benchmark intensity to

sweep from 10 to 50 and measure the percentage of link traffic

compared to the peak. As reported in the left panel of Figure 11, the

measured level of intensity (y-axis) is linearly proportional to the

configured intensity in LBench . Thus, we confirm LBench can be

used to generate the required level of interference. Next, we com-

pare the precision of LBench with the low-level hardware counters

(denoted as 𝑃𝐶𝑀). We set the background workload to sweep arith-

metic intensity from 1 to 128 flops per element. Then we measure

the resulting interference coefficient (𝐼𝐶) as the relative runtime of

LBench and report it in the middle panel of Figure 11. Additionally,

we measure the raw link traffic from PCM. The results show that at

high bandwidth usage (i.e., below 8 flops/element), LBench can still

quantify increased contention while the hardware counter measure-

ment saturates around 85 GB/s. The improved precision is because

contention can continue increasing due to queueing effects while

the measured traffic saturates at the link bandwidth. Hence, we

show that LBench can provide accurate measurements and injection

of a configurable level of intensity (𝐿𝑜𝐼).

For the study in this section, we configure LBench to run with

two threads for interference generation as it provides up to 50%

intensity. The threads are running on the local socket to inject

AQuantitative Approach for Adopting Disaggregated Memory in HPC Systems SC ’23, November 12–17, 2023, Denver, CO, USA

congestion on the link to the remote memory. We use only two

threads for injection to mitigate the impact of shared L3 caches

with the co-running workloads. The performance impact at 50%

intensity was measured to be less than 1% for all workloads.

6.1 Sensitivity to Memory Interference
We quantify an application’s sensitivity to memory interference on

memory pooling using LBench . We configure LBench to generate

interference of increased intensity levels, i.e., 𝐿𝑜𝐼 = 0, 10, Then,

for each application, we use its performance at 𝐿𝑜𝐼 = 0 as the base-

line and its relative performance at higher 𝐿𝑜𝐼 as the measurement

of its sensitivity to interference. A similar approach is also used in

previous work [49].

Figure 10 reports the measured sensitivity of each application

to interference on the memory pool on three system configura-

tions, i.e., the ratios between local memory capacity and remote

memory pool ranges from 25%, 50%, and 75%. In general, all appli-

cations show reduced performance at an increased level of memory

interference. Hypre and NekRS are among the most sensitive appli-

cations to memory interference. On the 50-50% tiers setup, Hypre

and NekRS show 15% and 13% performance loss at 𝐿𝑜𝐼 = 50. In

Figure 9, the memory access to the remote tier (i.e., memory pooling

in this case) is not the highest compared to other applications. How-

ever, due to their low arithmetic intensity, as quantified in Figure 5,

they show higher sensitivity than other applications. In contrast,

results in Figure 9 show that HPL has high accesses to the memory

pool, while having a low sensitivity to memory interference. On

the 50-50% tiers setup, it shows less than 5% performance loss even

at the highest level of interference.

An application’s sensitivity to memory interference on memory

pooling is caused by its remote memory access and is inversely

influenced by its arithmetic intensity. A quantification of applica-

tion sensitivity to memory interference on a target disaggregated

memory system is necessary for application users to determine its

deployment configurations on the system. For applications with

low sensitivity to memory interference, users can configure the job

deployment to leverage more capacity from the memory pool and

reduce the number of compute nodes needed to support the job. For

highly sensitive applications, the users can choose to deploy a job

with more compute nodes to reduce the remote memory access or

even completely avoid remote memory to fulfill their performance

requirements. Our quantification method provides a tool for HPC

end users to make informed decisions and tradeoffs, improving user

confidence in the new system architecture.

6.2 Interference Coefficient
We propose a second metric, the Interference Coefficient, to measure

the interference caused by an application on the memory pool.

As an application accesses the remote memory tier, it also injects

memory traffic onto the shared pool, causing interference on the

system and other jobs. The main difference from the first metric,

i.e., sensitivity, is that this metric is solely related to the remote

memory access but is not directly influenced by the arithmetic

intensity of the application. As the sensitivity of an application is

important for HPC end users, this metric is important for system-

level coordination. For example, the interference coefficient could

0

20

40

60

80

100

120

140

160

50% pooled 75% pooled

tim
e

(s
)

Baseline Optimized

0.85

0.9

0.95

1

0 10 20 30 40 50

Se
ns

iti
vi

ty
 to

 In
te

rfe
re

nc
e

Interference Intensity

50%-baseline
50%-optimized
75%-baseline
75%-optimized

0.0E+00

5.0E+11

1.0E+12

1.5E+12

2.0E+12

2.5E+12

3.0E+12

50% pooled 75% pooled

RE
m

ot
e

Ac
ce

ss
 (B

yt
es

)

Baseline Optimized

Figure 12: Optimization on data placement in BFS improves
runtime, reduces remote memory accesses and sensitivity to
memory interference.

be provided as a hint in job descriptions to enable schedulers with

interference awareness to improve co-location decisions.

We quantify the interference coefficient of applications on a

target system by co-running the application with LBench and calcu-

lating the relative slowdown compared to an idle system. The right

panel of Figure 11 reports the measured interference coefficient for

the applications on a 50% memory pooling setup. The results show

NekRS and Hypre can introduce the most memory interference

to other co-running jobs while HPL and XSBench introduce the

lowest interference. The spread in Figure 11 highlights the variance

in the interference coefficient caused by a workload. For instance,

in Hypre, the compute phase causes high interference coefficient,

while the initialization phase causes a low interference coefficient.

An application’s sensitivity to memory interference is deter-

mined by the arithmetic intensity and the amount of accesses

to memory pools. Users need to incorporate the sensitivity to

memory interference in deployment decisions.

7 USE CASES
In this section, we demonstrate use cases for leveraging the results

of the three-level quantitative study to guide optimization at both

the application level and the system level.

7.1 Optimizing Remote Memory Traffic
In the first case study, we show that analyzing the memory access

distribution on memory tiers can guide programmers to prioritize

the optimization of data placement at the application level. The

results in the multi-tier analysis of BFS with 75% remote capacity

showed 99% remote memory access – the remote access ratio is

much higher than the capacity ratio reference. The mismatch in-

dicates that the most accessed data structures are in the remote

memory. Coupled with information obtained from memory alloca-

tion sites in our profiler, we identified major memory objects and

found that the Parents array is small but highly accessed.

We consider three options to change its placement into the node-

local memory. First, explicitly allocate in local memory, which is

straightforward with libnuma. However, in the case of BFS, several

large objects are allocated before Parents, leaving no space in local

memory at the allocation site of Parents. Alternatively, we can
explicitly allocate less accessed objects in remote memory to free

up space. The second option is to migrate to local memory after

initialization by exchanging pages between the local and remote

memory using libnuma. However, this is not feasible to implement

SC ’23, November 12–17, 2023, Denver, CO, USA Jacob Wahlgren, Gabin Schieffer, Maya Gokhale, and Ivy Peng

at the application level since it requires information on all other

memory objects in local memory, such as size and access intensity.

Thus, this option is often implemented at the system software level.

The third option is application specific, by changing the order of

allocations. By allocating and initializing objects in order of hot-

ness, the hottest objects will be placed in local memory due to the

first-touch policy. Note that this option is only suitable for appli-

cations where all memory objects have a similar lifespan (usually

the whole program duration). With frequent dynamic allocations

and deallocations, this option may cause the local memory to be

under-utilized.

We choose to change the allocation order in BFS so that Parents
is allocated and initialized first. With this simple change, the remote

access ratio is reduced from 99% to 80% in the 75% remote memory

scenario, resulting in a 6% performance improvement. Further re-

applying the multi-tier memory traffic analysis shows that now

many remote accesses come from dynamic heap allocations. In

BFS, these are used for temporary structures, including the current

frontier. Since they are dynamic in scope and size, they cannot be

pre-allocated like the parents. We attempted to reserve space in

the local memory by allocating a block of memory at the start and

freeing it at the end of the initialization. However, this did not yield

a significant benefit.

Instead, by inspecting the code, we identified a temporary object

used during initialization but not afterward. The original code

leaves the object unfreed due to a performance bug in the (de)-

allocator. Indeed, freeing the object degrades performance by 3%

when running in local memory only. However, with the memory

pool as the secondary tier, freeing up the object reserves more

local memory for dynamic allocations, offsetting the performance

overhead of deallocation. As shown in Figure 12, this 1-line change

further reduced the remote access ratio from 80% to 50%, resulting in

a 13% performance improvement over the baseline at 75% memory

pooling. At 50% pooling, the optimized version almost eliminates

remote memory access as shown in the middle panel of Figure 12.

We re-evaluate the application’s sensitivity to memory interference

as in Section 6 using the optimized version for the cases of 50% and

75% pooling. We compare the interference sensitivity in the right

panel of Figure 12. The results show that the optimized version has

a significantly reduced interference sensitivity. In the general case,

the interfaces provided by Linux are insufficient for this kind of

data placement optimization. An interface for reserving a portion

of local memory for dynamic allocation would empower developers

to optimize their applications for disaggregated memory.

7.2 Interference-Aware Job Scheduling
The results in Section 6.1 show that the performance impact of

memory interference differs between different workloads. For prac-

tical adoption in HPC systems, job schedulers can be extended

to take memory interference sensitivity into account for job co-

location decisions. For instance, the user can use LBench and the

quantification method in Section 6 to quantify the application’s

sensitivity and provide it at job submission. Without interference

awareness, interference-sensitive workloads may be scheduled

Baseline I-aware

68

70

72

Ex
ec

ut
io

n
Ti

m
e

(s
)

(a) NekRS

Baseline I-aware

104

106

108

Ex
ec

ut
io

n
Ti

m
e

(s
)

(b) BFS

Baseline I-aware
42

43

44

45

Ex
ec

ut
io

n
Ti

m
e

(s
)

(c) SuperLU

Baseline I-aware
54

56

58

60

Ex
ec

ut
io

n
Ti

m
e

(s
)

(d) HPL

Baseline I-aware
80.0

82.5

85.0

87.5

90.0

Ex
ec

ut
io

n
Ti

m
e

(s
)

(e) Hypre

Baseline I-aware

36.0

36.5

37.0

Ex
ec

ut
io

n
Ti

m
e

(s
)

(f) XSBench

Figure 13: The five-number summary of the execution time
of each application in 100 runs with a mixture of co-running
applications using a random baseline and interference-aware
optimization.

together using the same memory pool, leading to poor perfor-

mance. Interference-aware scheduling has shown benefit in previ-

ous works targeting other types of shared resources or configura-

tions [7, 12, 31, 46, 52, 54].

To study the impact of interference-aware scheduling, we use the

emulation setup and workloads from before with 50% memory pool

capacity. To simulate other jobs being scheduled onto the memory

pool, we inject link traffic using LBench . The level of interference

changes randomly between 0–50% every 60 s, representing different

types of workloads. To simulate an interference-aware scheduler,

which prevents interference-inducing jobs from being co-located,

we vary the level of interference between 0–20% instead. Each

workload is run 100 times in both configurations.

The execution time in the baseline and interference-aware sched-

uler for eachworkload is shown in Figure 13. In general, interference-

aware scheduling improves execution time and reduces perfor-

mance variability. The execution time is reduced because the aver-

age interference is lower with interference-aware scheduling. The

variability is reduced because the range of possible interference

levels is smaller with interference awareness as the high end of

the spectrum is cut off. However, the results vary among the set

of evaluated workloads. The average speedup is 4% for Hypre, 2%

for NekRS and SuperLU, 1% for BFS and HPL, and 0% for XSBench.

As a measure of variability, the 75th percentile of execution time

decreased by 5% for Hypre, 3% for NekRS and SuperLU, 2% BFS,

and 1% for HPL and XSBench.

As expected, these results largely match the measured interfer-

ence coefficients for the workloads shown in Figure 11 and the

interference sensitivity in Figure 10b. Hypre has the highest in-

terference sensitivity and benefits most from interference-aware

scheduling. Meanwhile, XSBench and HPL have the lowest inter-

ference sensitivity and show little benefit from interference-aware

scheduling. The previous results showed that NekRS is more in-

terference sensitive than BFS, but they show equal benefits from

interference awareness.

AQuantitative Approach for Adopting Disaggregated Memory in HPC Systems SC ’23, November 12–17, 2023, Denver, CO, USA

These results indicate that integrating our quantitative method-

ology of memory interference into job schedulers such as SLURM

could reduce interference and improve performance in a disag-

gregated memory system. The improvement of performance and

reduced variation could incentivize users to inform their applica-

tion’s interference profile to the job scheduler and increase their

confidence in the new memory architecture. Also, given that a 4%

performance improvement was observed for Hypre in our emulated

environment, in an environment with higher induced interference,

e.g., with more than two nodes per memory pool, the performance

improvement could be more significant. We recognize that a real

disaggregated system may have an even more skewed latency dis-

tribution than the one emulated in our study. Such a distribution

has been found to have a high impact on some types of workloads

and will be better studied using more accurate simulators such as

gem5 and FPGA-based emulators [2, 5]. Nevertheless, our exper-

iments with LBench still indirectly reflect the impact of random

long latency induced by multiple jobs sharing a memory pool.

8 RELATEDWORKS
In this section we summarize related works on multi-tier memory

systems and disaggregated memory.

DisaggregatedMemory Systems.Both faultingmethods (page-

swapping) and non-faulting methods (direct cacheline access) have

been proposed for implementing memory disaggregation [26]. Until

recently, network-based page-swapping has been the main practical

option [3, 19, 27]. With major vendors adopting the CXL standard,

many recent works focus on realizing non-faulting CXL-based

memory disaggregation with a focus on cloud systems. Pinto et al.

developed a full-stack prototype based on CXL-predecessor Open-

CAPI using FPGAs, and Gouk et al. developed a similar prototype

for CXL [18]. The implications of CXL-based memory for cloud

workloads were studied in Meta datacenters [30] and Microsoft

Azure datacenters [24]. Ding et al. proposed an extended mem-

ory roofline model for designing HPC systems with disaggregated

memory [8]. They used analytical methods to estimate the local to

remote memory access ratio in a set of AI trainings, data analytics

workloads, and HPC micro-benchmarks. The access ratio was used

in a roofline model to guide system design. Wahlgren et al. pro-

posed an emulation method for CXL-based memory and focused

on evaluating the performance penalty in HPC workloads [48]. In

contrast, our method is based on extensive quantitative measure-

ments of memory access, application performance, and memory

interference in HPC applications.

Memory Interference and Contention. Tudor et al. analyzed
the impact of interference on parallel applications on multi-socket

systems and developed an analytical model for memory contention

based on the queuing theory [45]. In infrastructures with workload

co-location, prior works have investigated interference from shared

hardware resources, such as L3 cache, network, etc, and their impact

on performance and job scheduling policies [7, 46, 54]. Recently,

Masouros et al. developed an interference-aware cloud scheduler

for disaggregated memory systems [31], and Lee et al. developed

optimizations to mitigate interference for virtual machines with

disaggregated memory [23]. Zacarias et al. developed a prediction

model to estimate the performance degradation from interference

in a disaggregated memory system [52, 53]. They target a split

architecture, where remote memory is provided by other compute

nodes rather than dedicated memory servers, different from our

target architecture in this work.

Data Placement inMulti-TierMemory. Extensive works have
proposed automatic and transparent data placement solutions in

multi-tier memory systems implemented with non-volatile mem-

ory or CXL. Agarwal and Wenisch proposed Thermostat, a fully

application-transparent data placement runtime [1] that detects

hotness of pages for migration. Duraisamy et al. evaluated a trans-

parent runtime and optimized cluster scheduler in a production

datacenter [12]. For CXL-based memory, Maruf et al. proposed TPP

for transparent page placement for direct-attached memory [30],

and Li et al. proposed Pond for data placement in shared memory

pools [24].

9 CONCLUSIONS
The recent adoption of disaggregated memory in several major data

centers and the severe memory underutilization and high cost of

memory in HPC facilities have mandated a closer look into the prac-

tical adoption of rack-scale memory pooling as a non-disruptive

option on future HPC systems. This work described the prospects

and requirements for adoption. In particular, we presented a multi-

level quantitative methodology for dissecting application require-

ments on memory systems, from general to multi-tier, and memory

pooling. We applied our method in NekRS, SuperLU, Hypre, HPL,

BFS, and XSBench and identified key insights. In two case stud-

ies, we also demonstrated how findings from our method could

be used for optimizing memory access at the application level and

interference-aware job scheduling at the system level.

10 ACKNOWLEDGMENTS
This research is supported by the European Commission under the

Horizon project OpenCUBE (101092984) and the Swedish Research

Council (no. 2022.03062). This work was partially performed under

the auspices of the U.S. Department of Energy by Lawrence Liver-

more National Laboratory under contract No. DE-AC52-07NA27344

with support from the DOE Exascale Computing Project.

REFERENCES
[1] Neha Agarwal and Thomas F Wenisch. 2017. Thermostat: Application-

transparent page management for two-tiered main memory. In Proceedings of the
Twenty-Second International Conference on Architectural Support for Programming
Languages and Operating Systems. 631–644.

[2] Maryam Babaie, Ayaz Akram, and Jason Lowe-Power. 2023. Enabling Design

Space Exploration of DRAM Caches for Emerging Memory Systems. In 2023
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS). IEEE, 340–342.

[3] Maciej Bielski, Christian Pinto, Daniel Raho, and Renaud Pacalet. 2016. Survey

on memory and devices disaggregation solutions for HPC systems. In 2016 IEEE
Intl Conference on Computational Science and Engineering (CSE) and IEEE Intl Con-
ference on Embedded and Ubiquitous Computing (EUC) and 15th Intl Symposium
on Distributed Computing and Applications for Business Engineering (DCABES).
IEEE, 197–204.

[4] Cineca. 2022. Leonardo HPC System. https://leonardo-supercomputer.cineca.eu/

hpc-system/.

[5] Hüsrev Cılasun, Christopher Macaraeg, Ivy Peng, Abhik Sarkar, and Maya

Gokhale. 2022. FPGA-accelerated simulation of variable latency memory systems.

In Proceedings of the International Symposium on Memory Systems (MEMSYS ’22).
[6] Timothy A. Davis and Yifan Hu. 2011. The university of Florida sparse matrix

collection. ACM Trans. Math. Software 38, 1 (nov 2011), 1–25. https://doi.org/10.

1145/2049662.2049663

https://leonardo-supercomputer.cineca.eu/hpc-system/
https://leonardo-supercomputer.cineca.eu/hpc-system/
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663

SC ’23, November 12–17, 2023, Denver, CO, USA Jacob Wahlgren, Gabin Schieffer, Maya Gokhale, and Ivy Peng

[7] Christina Delimitrou and Christos Kozyrakis. 2013. ibench: Quantifying inter-

ference for datacenter applications. In 2013 IEEE international symposium on
workload characterization (IISWC). IEEE, 23–33.

[8] Nan Ding, Samuel Williams, Hai Ah Nam, Taylor Groves, Muaaz Gul Awan,

LeAnn Lindsey, Christopher Daley, Oguz Selvitopi, Leonid Oliker, and Nicholas

Wright. 2022. Methodology for Evaluating the Potential of DisaggregatedMemory

Systems. In 2022 IEEE/ACM International Workshop on Resource Disaggregation in
High-Performance Computing (REDIS). 1–11.

[9] Jack Dongarra. 2016. Report on the Sunway TaihuLight System. https://netlib.

org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf.

[10] Jack Dongarra. 2017. Report on the Tianhe-2A System. https://icl.utk.edu/files/

publications/2017/icl-utk-970-2017.pdf.

[11] Jack J Dongarra, Piotr Luszczek, and Antoine Petitet. 2003. The LINPACK bench-

mark: past, present and future. Concurrency and Computation: practice and
experience 15, 9 (2003), 803–820.

[12] Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Rajwar, David Culler, Zhiyi

Xu, Jianing Fan, Christopher Kennelly, Bill McCloskey, Danijela Mijailovic, Brian

Morris, Chiranjit Mukherjee, Jingliang Ren, Greg Thelen, Paul Turner, Carlos

Villavieja, Parthasarathy Ranganathan, and Amin Vahdat. 2023. Towards an

Adaptable Systems Architecture for Memory Tiering at Warehouse-Scale. In

Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 3 (Vancouver, BC,
Canada) (ASPLOS 2023). Association for Computing Machinery, New York, NY,

USA, 727–741. https://doi.org/10.1145/3582016.3582031

[13] By Kim Eun-jin. 2023. Samsung and SK Hynix Enjoy a Rush of Orders for

New Memories. http://www.businesskorea.co.kr/news/articleView.html?idxno=

109380. Business Korea (2023).
[14] Mohammad Ewais and Paul Chow. 2023. Disaggregated Memory in the Datacen-

ter: A Survey. IEEE Access (2023). Publisher: IEEE.

[15] Robert D Falgout and Ulrike Meier Yang. 2002. hypre: A library of high per-

formance preconditioners. In Computational Science—ICCS 2002: International
Conference Amsterdam, The Netherlands, April 21–24, 2002 Proceedings, Part III.
Springer, 632–641.

[16] Paul Fischer, Stefan Kerkemeier, Misun Min, Yu-Hsiang Lan, Malachi Phillips,

Thilina Rathnayake, Elia Merzari, Ananias Tomboulides, Ali Karakus, Noel

Chalmers, et al. 2022. NekRS, a GPU-accelerated spectral element Navier–Stokes

solver. Parallel Comput. 114 (2022), 102982.
[17] Fujitsu. 2020. Supercomputer Fugaku – Specifications. https://www.fujitsu.com/

global/about/innovation/fugaku/specifications/.

[18] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo Jung. 2022.

Direct Access, High-Performance Memory Disaggregation with DirectCXL. In

2022 USENIX Annual Technical Conference (USENIX ATC 22). 287–294.
[19] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G

Shin. 2017. Efficient Memory Disaggregation with Infiniswap.. In NSDI. 649–667.
[20] HPCWire. 2021. Livermore’s El Capitan Supercomputer to Debut HPE ‘Rab-

bit’ Near Node Local Storage. https://hpc.llnl.gov/livermoreâĂŹs-el-capitan-

supercomputer-debut-hpe-rabbit-âĂŸnear-nodeâĂŹ-storage.

[21] Lawrence Livermore National Laboratory. 2018. Sierra. https://hpc.llnl.gov/

hardware/compute-platforms/sierra.

[22] Oak Ridge National Laboratory. 2021. Frontier User Guide. https://docs.olcf.ornl.

gov/systems/frontier_user_guide.html.

[23] Jinhoon Lee, Yeonwoo Jung, Suyeon Lee, Safdar Jamil, Sungyong Park, Kwangwon

Koh, Hongyeon Kim, Kangho Kim, and Youngjae Kim. 2023. MFence: Defending

Against Memory Access Interference in a Disaggregated Cloud Memory Platform.

(2023).

[24] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti,

Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal,

Mark D. Hill, Marcus Fontoura, and Ricardo Bianchini. 2023. Pond: CXL-

Based Memory Pooling Systems for Cloud Platforms. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS
2023). Association for Computing Machinery, New York, NY, USA, 574–587.

https://doi.org/10.1145/3575693.3578835

[25] Xiaoye S. Li. 2005. An Overview of SuperLU: Algorithms, Implementation,

and User Interface. ACM Trans. Math. Softw. 31, 3 (sep 2005), 302–325. https:

//doi.org/10.1145/1089014.1089017

[26] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K

Reinhardt, and Thomas F Wenisch. 2009. Disaggregated memory for expansion

and sharing in blade servers. ACM SIGARCH computer architecture news 37, 3
(2009), 267–278.

[27] Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin AuYoung, Jichuan Chang,

Parthasarathy Ranganathan, and Thomas F Wenisch. 2012. System-level im-

plications of disaggregated memory. In IEEE International Symposium on High-
Performance Comp Architecture. IEEE, 1–12.

[28] LUMI. 2022. LUMI Documentation – Hardware. https://docs.lumi-supercomputer.

eu/hardware/compute/lumig/.

[29] Suyash Mahar, Hao Wang, Wei Shu, and Abhishek Dhanotia. 2023. Workload

Behavior Driven Memory Subsystem Design for Hyperscale. arXiv preprint
arXiv:2303.08396 (2023).

[30] HasanAlMaruf, HaoWang, AbhishekDhanotia, JohannesWeiner, Niket Agarwal,

Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury, Shobhit Kanaujia,

and Prakash Chauhan. 2023. TPP: Transparent Page Placement for CXL-Enabled

Tiered-Memory. In Proceedings of the 28th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, Volume 3.
742–755.

[31] Dimosthenis Masouros, Christian Pinto, Michele Gazzetti, Sotirios Xydis, and

Dimitrios Soudris. 2023. Adrias: Interference-Aware Memory Orchestration for

Disaggregated Cloud Infrastructures. In 2023 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 855–869.

[32] Satoshi Matsuoka, Jens Domke, Mohamed Wahib, Aleksandr Drozd, and Torsten

Hoefler. 2023. Myths and Legends in High-Performance Computing. arXiv
preprint arXiv:2301.02432 (2023).

[33] George Michelogiannakis, Benjamin Klenk, Brandon Cook, Min Yee Teh,

Madeleine Glick, Larry Dennison, Keren Bergman, and John Shalf. 2022. A case

for intra-rack resource disaggregation in hpc. ACM Transactions on Architecture
and Code Optimization (TACO) 19, 2 (2022), 1–26.

[34] National Energy Research Scientific Computing (NERSC). 2021. Perlmutter

Architecture. https://docs.nersc.gov/systems/perlmutter/architecture/.

[35] NVIDIA. 2020. NVIDIA Selene: Leadership-Class Supercomputing Infrastruc-

ture. https://www.nvidia.com/en-us/on-demand/session/supercomputing2020-

sc2019/.

[36] Ivy Peng, Ian Karlin, Maya Gokhale, Kathleen Shoga, Matthew Legendre, and

Todd Gamblin. 2021. A holistic view of memory utilization on HPC systems:

Current and future trends. In The International Symposium on Memory Systems.
1–11.

[37] Ivy Peng, Roger Pearce, and Maya Gokhale. 2020. On the memory underuti-

lization: Exploring disaggregated memory on hpc systems. In 2020 IEEE 32nd
International Symposium on Computer Architecture and High Performance Com-
puting (SBAC-PAD). IEEE, 183–190.

[38] Ivy Peng, Kai Wu, Jie Ren, Dong Li, and Maya Gokhale. 2020. Demystifying the

performance of hpc scientific applications on nvm-based memory systems. In

2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 916–925.

[39] Christian Pinto, Dimitris Syrivelis, Michele Gazzetti, Panos Koutsovasilis, Andrea

Reale, Kostas Katrinis, and H Peter Hofstee. 2020. Thymesisflow: A software-

defined, hw/sw co-designed interconnect stack for rack-scale memory disaggrega-

tion. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 868–880.

[40] Julian Shun and Guy E. Blelloch. 2013. Ligra: a lightweight graph processing

framework for shared memory. ACM SIGPLAN Notices 48, 8 (aug 2013), 135–146.

https://doi.org/10.1145/2517327.2442530

[41] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Ipoom Jeong, Ren Wang, and

Nam Sung Kim. 2023. Demystifying CXL Memory with Genuine CXL-Ready

Systems and Devices. arXiv preprint arXiv:2303.15375 (2023).
[42] TOP500.org. 2022. Top500 List November 2022. https://www.top500.org/lists/

top500/2022/11/

[43] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz. 2014. XS-

Bench - The Development and Verification of a Performance Abstraction for

Monte Carlo Reactor Analysis. In PHYSOR 2014 - The Role of Reactor Physics toward
a Sustainable Future. Kyoto. https://www.mcs.anl.gov/papers/P5064-0114.pdf

[44] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. 2020. Disaggregating persistent

memory and controlling them remotely: An exploration of passive disaggregated

key-value stores. In Proceedings of the 2020 USENIX Conference on Usenix Annual
Technical Conference. 33–48.

[45] Bogdan Marius Tudor, Yong Meng Teo, and Simon See. 2011. Understanding

off-chip memory contention of parallel programs in multicore systems. In 2011
International Conference on Parallel Processing. IEEE, 602–611.

[46] Achilleas Tzenetopoulos, Dimosthenis Masouros, Sotirios Xydis, and Dimitrios

Soudris. 2022. Interference-aware workload placement for improving latency

distribution of converged HPC/Big Data cloud infrastructures. In Embedded
Computer Systems: Architectures, Modeling, and Simulation: 21st International
Conference, SAMOS 2021, Virtual Event, July 4–8, 2021, Proceedings. Springer,
108–123.

[47] Summit user Guide. 2018. Summit. https://docs.olcf.ornl.gov/systems/summit_

user_guide.html.

[48] Jacob Wahlgren, Maya Gokhale, and Ivy B Peng. 2022. Evaluating Emerging

CXL-enabled Memory Pooling for HPC Systems. 2022 IEEE/ACM Workshop on
Memory Centric High Performance Computing (2022).

[49] Chenxi Wang, Yifan Qiao, Haoran Ma, Shi Liu, Yiying Zhang, Wenguang Chen,

Ravi Netravali, Miryung Kim, and Guoqing Harry Xu. 2023. Canvas: Isolated

and adaptive swapping for multi-applications on remote memory. In NSDI.
[50] Johannes Weiner. 2022. [PATCH] mm: mempolicy: N:M interleave pol-

icy for tiered memory nodes. https://lore.kernel.org/linux-mm/YqD0%

2FtzFwXvJ1gK6@cmpxchg.org/T/

https://netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf
https://netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf
https://icl.utk.edu/files/publications/2017/icl-utk-970-2017.pdf
https://icl.utk.edu/files/publications/2017/icl-utk-970-2017.pdf
https://doi.org/10.1145/3582016.3582031
http://www.businesskorea.co.kr/news/articleView.html?idxno=109380
http://www.businesskorea.co.kr/news/articleView.html?idxno=109380
https://www.fujitsu.com/global/about/innovation/fugaku/specifications/
https://www.fujitsu.com/global/about/innovation/fugaku/specifications/
https://hpc.llnl.gov/livermore’s-el-capitan-supercomputer-debut-hpe-rabbit-‘near-node’-storage
https://hpc.llnl.gov/livermore’s-el-capitan-supercomputer-debut-hpe-rabbit-‘near-node’-storage
https://hpc.llnl.gov/hardware/compute-platforms/sierra
https://hpc.llnl.gov/hardware/compute-platforms/sierra
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html
https://doi.org/10.1145/3575693.3578835
https://doi.org/10.1145/1089014.1089017
https://doi.org/10.1145/1089014.1089017
https://docs.lumi-supercomputer.eu/hardware/compute/lumig/
https://docs.lumi-supercomputer.eu/hardware/compute/lumig/
https://docs.nersc.gov/systems/perlmutter/architecture/
https://www.nvidia.com/en-us/on-demand/session/supercomputing2020-sc2019/
https://www.nvidia.com/en-us/on-demand/session/supercomputing2020-sc2019/
https://doi.org/10.1145/2517327.2442530
https://www.top500.org/lists/top500/2022/11/
https://www.top500.org/lists/top500/2022/11/
https://www.mcs.anl.gov/papers/P5064-0114.pdf
https://docs.olcf.ornl.gov/systems/summit_user_guide.html
https://docs.olcf.ornl.gov/systems/summit_user_guide.html
https://lore.kernel.org/linux-mm/YqD0%2FtzFwXvJ1gK6@cmpxchg.org/T/
https://lore.kernel.org/linux-mm/YqD0%2FtzFwXvJ1gK6@cmpxchg.org/T/

AQuantitative Approach for Adopting Disaggregated Memory in HPC Systems SC ’23, November 12–17, 2023, Denver, CO, USA

[51] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an

insightful visual performance model for multicore architectures. Commun. ACM
52, 4 (2009), 65–76. Publisher: ACM New York, NY, USA.

[52] Felippe Vieira Zacarias, Paul Carpenter, and Vinicius Petrucci. 2021. Improving

hpc system throughput and response time using memory disaggregation. In 2021
IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS).
IEEE, 283–290.

[53] Felippe Vieira Zacarias, Rajiv Nishtala, and Paul Carpenter. 2020. Contention-

aware application performance prediction for disaggregated memory systems.

In Proceedings of the 17th ACM International Conference on Computing Frontiers.
49–59.

[54] Felippe Vieira Zacarias, Vinicius Petrucci, Rajiv Nishtala, Paul Carpenter, and

Daniel Mossé. 2021. Intelligent colocation of HPC workloads. J. Parallel and
Distrib. Comput. 151 (2021), 125–137.

Appendix: Artifact Description/Artifact Evaluation

ARTIFACT IDENTIFICATION
Memory disaggregation has recently been adopted in several major
data centers to improve resource utilization, driven by cost and
sustainability. Meanwhile, recent studies on large-scale HPC facili-
ties have also highlighted memory underutilization. A promising
and non-disruptive option for memory disaggregation is rack-scale
memory pooling, where node-local memory is supplemented by
shared memory pools. This work outlines the prospects and re-
quirements for adoption and clarifies several misconceptions. We
propose a quantitative method for dissecting application require-
ments on the memory system from the top down in three levels,
moving from general, to multi-tier memory systems, and then to
memory pooling. We also provide a multi-level profiling tool and
LBench to facilitate the quantitative approach. We evaluated a set of
representative HPCworkloads on an emulated platform. Our results
show that prefetching activities can significantly influence memory
traffic profiles. Interference in memory pooling has varied impacts
on applications, depending on their access ratios to memory tiers
and arithmetic intensities. Finally, findings from our method are
applied in two case studies to show benefits at the application level
and system level, achieving 50% reduction in remote access and 13%
speedup in BFS, and reducing performance variation of co-located
workloads in interference-aware job scheduling.

The computational artifacts are:

• The profiling tool, with four modes: RSS (working set size),
perp (Periodic Profiling of arithmetic intensity and memory
access counters), samp (sampling of memory access virtual
addresses), pf (Periodic Profiling of prefetching counters).

• LBench, which can be run either in continuous mode to gen-
erate background traffic, or in constant mode (fixed iteration
count) to measure the interference coefficient.

• setup_waste, a tool to configure the local memory capacity
in the emulated system.

• A patch to Ligra BFS improving the performance on multi-
tier memory.

Additional tools used include Intel PCM and numactl. The evalu-
ated workloads are described in the paper. By utilizing the computa-
tional artifacts, all the results in the paper can be reproduced, either
to confirm the correctness or to extend the analysis to additional
workloads.

REPRODUCIBILITY OF EXPERIMENTS
The workflow for carrying out the experiments is listed below.

• First run with RSS profiler. Calculate 25,50,75% of reported
peak working set, to be used with setup_waste below. (10
min)

• Fig 4: Run with perp profiler. (10 min)
• Fig 5: Run with samp profiler. (10 min)
• Fig 6-7: Run with pf profiler. (10 min)
• Fig 8: Use setup_waste, run with perp profiler. (40 min)
• Fig 10, left: Run continuous LBench with pcm-numa. (1 min)

• Fig 10, middle: Run continuous LBench with pcm-numa, and
also constant LBench. (2 min)

• Fig 10, right: Use setup_waste, then run constant LBench in
a loop during workload execution. (20 min)

• Fig 9: Use setup_waste, then run continuous LBench during
workload execution. (60 min)

• Fig 11: Use setup_waste, then run with perp profiler
(left/middle), and constant LBench (right). (10 min)

• Fig 12: Use setup_waste and LBench as described in the paper.
Run 100 executions of each configuration. (40 h)

The results are expected to match the results presented in the pa-
per. The paper also includes an extensive description and evaluation
of these results.

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Challenges and Misconceptions
	2.2 Practical Considerations for Adoption

	3 Methodology
	3.1 Multi-level Profiling
	3.2 Measuring Memory Interference
	3.3 Emulation Platform
	3.4 Analytical Models

	4 Workload Characterization
	4.1 Memory Capacity and Bandwidth Scaling
	4.2 Hardware Prefetching

	5 Multi-tier Memory
	5.1 Tiered Memory Access
	5.2 Phase Changes in Memory Access

	6 Interference on Memory Pooling
	6.1 Sensitivity to Memory Interference
	6.2 Interference Coefficient

	7 Use Cases
	7.1 Optimizing Remote Memory Traffic
	7.2 Interference-Aware Job Scheduling

	8 Related Works
	9 Conclusions
	10 Acknowledgments
	References

